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Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários
para a obtenção do grau de Doutor em Ciências (D.Sc.)
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Orientadores: Virgílio José Martins Ferreira Filho
Juan Pablo Cajahuanca Luna

Programa: Engenharia de Produção

Esta tese propõe modelos de programação linear inteira-mista para solução do
problema de planejamento de operações de embarcações conhecidas como PSVs
(platform supply vessels), as quais têm como principal função transportar diver-
sos tipos de suprimentos entre uma base de apoio offshore e unidades marítimas,
tais como plataformas de produção e sondas de perfuração. Esse problema envolve
decisões de nível tático e operacional. Três modelos são propostos. Um deles vol-
tado para o problema tático de clusterização de plataformas, modelado como um
problema de múltiplas mochilas com múltiplas dimensões, em que plataformas re-
presentam itens e, PSVs, mochilas. E outros dois modelos voltados para o problema
operacional de roteirização e programação de PSVs, envolvendo múltiplos produtos,
frota heterogênea com múltiplos compartimentos, restrições de programação, tais
como janelas de tempo, possibilidade de planejar antecipadamente múltiplas via-
gens, e de realizar múltiplas visitas. Um desses modelos de roteirização considera
incerteza sob a forma de atrasos, os quais interrompem temporariamente os serviços
offshore, sendo tais atrasos oriundos de condições ambientais offshore adversas. Tal
modelo é tratado como um problema de recurso de dois estágios. Para avaliar o
desempenho desses modelos, foram geradas instâncias artificiais inspiradas em da-
dos reais, contendo 87 plataformas, no caso do modelo de clusterização, e de 3 a
7 plataformas no caso dos modelos de roteirização, resultando em 5 a 20 pedidos
de transporte para serem roteirizados. Um amplo conjunto de experimentos feito
com tais modelos revela soluções de boa qualidade, obtidas em tempo hábil e com
relevância econômica, tornando tais modelos adequados para uso prático.
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This dissertation proposes mixed-integer linear programming models to solve the
problem of planning operations of ships known as PSVs (platform supply vessels),
which have as main function the transport of several types of supplies between an
offshore supply base and maritime platforms, such as production units and drilling
rigs. This problem involves decisions in tactical and operational levels. Three models
are proposed. One of them focused on the tactical problem of platforms’ cluster-
ing, modeled as an m-dimensional multiple knapsack problem, in which platforms
represent items and, PSVs, knapsacks. And other two models focused on the opera-
tional problem of routing and scheduling of PSVs, including multiple commodities,
heterogeneous and mutiple-compartment fleet, scheduling constraints, such as time
windows, possibility of planning in advance multiple trips, and of performing mul-
tiple visits. One of these routing models considers uncertainty regarded as delays,
which temporarily interrupt offshore services, and originate from adverse environ-
mental offshore conditions. Such a model is treated as a two-stage recourse problem.
To assess the performance of these models, artificial instances inspired from real data
were designed, containing 87 platforms, in the case of the clustering model, and 3 to
7 platforms, in the case of the routing models, resulting in 5 to 20 transport orders to
be routed. A broad set of experiments conducted with such instances reveals good
quality solutions, achieved in acceptable time, and with demonstrated economical
relevance, which turns these models suitable for practical use.
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Capítulo 1

Introduction

In 2021, the offshore production of petroleum and natural gas in Brazil corresponded,
respectively, to 97 and 83% of the totals exploited by the country regarding those
hydrocarbon sources. The Pre-salt reservoirs alone contributed with 74% of the
petroleum produced and with 67.5% of the gas. Such numbers position Brazil in the
8th and 30th places in the world ranking of petroleum and natural gas producers,
respectively, as seen in ANP (2022), with the national largest operator being Petróleo
Brasileiro S.A., better known by the portmanteau Petrobras.

As the majority of the exploration and production of oil and gas (E&P) in
Brazil is in the sea, the technological challenges to operate fields appear not only in
traditional areas such as reservoir management, well construction and production
engineering, but also in the transportation of personnel and cargoes between onshore
facilities and maritime platforms.

In this dissertation, the term cargoes is overloaded in meaning to every type
of supply that needs to be transported to maritime platforms, or from them to
shore. Commonly, cargoes are handled either inside containers, in units, or even
as bulk, and appear in three classes: deck cargo, comprised by all kinds of crane-
handled material, which may appear as containerized items, chemical tanks, pipes,
and special well equipment; liquid bulk, such as fuel oil (diesel), fresh water, drilling
mud, and brine; and dry bulk, which includes cement, barite, and bentonite.

Depending on the type of platform in operation, on the service it may be per-
forming, and on the current operational requirements, the cargo demand profile can
change. Therefore, it is a key aspect for E&P business to achieve sound, cost-effective
logistic plans for utilization of transport resources and onshore infrastructure. Ac-
cording to AAS et al. (2007), the area typically in charge of such plans is the so-called
offshore logistics, also known as upstream logistics, which aims to provide the best
possible service and operational continuity to offshore activities.

The key role in offshore logistics is played by the platform supply vessels (PSV),
a ship type whose primary functions are logistic support and transportation of car-
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goes between an onshore infrastructure, commonly a supply base, and maritime
platforms, such as rigs, production units and special service ships (BABICZ, 2015).
A typical large PSV presents approximately 100 m of length, 18 m of beam, 900 m2 of
brute deck area, from which in general 70–80% are effectively used to accommodate
deck cargoes, while the remainder serves to crew circulation. Figure 1.1 presents
two views of a PSV in service. Figure 1.1a illustrates its deck space containing
containers and chemical tanks, whereas Figure 1.1b shows a “lift"1 operation.

(a) Deck area of a PSV. (b) Lifting operati-
ons.

Figura 1.1: PSV in service (LEITE, 2012).

Compartments for liquid and dry bulks can vary greatly from one vessel to
another, but usual sizes for the largest vessels gravitate around 1500 m3 for fuel
oil, 2300 m3 for fresh water, 3800 m3 for drilling fluids and 400 m3 for dry bulk (TI-
DEWATER, 2023). When in service offshore, a PSV can carry concomitantly, for
instance, containers, diesel, and cement to be delivered for one or more platforms.
Moreover, it can also bear deck cargoes that should be returned to shore.

PSVs are costly shuttle resources, usually chartered on an year-basis at daily
rates near to USD 230,000.00 (MENDES VIANNA, 2016) for a large vessel, despite
it can fluctuate considerably as a function of crude oil prices. PSVs can also be
chartered to perform only a few offshore services, however the daily rates in such a
condition tend to be even higher. If one includes fuel consumption at 9.3 tons/day, as
reported by ADLAND et al. (2019), and fuel oil priced at USD 1,100.00/ton (OIL-
MONSTER, 2022), the daily cost to maintain a vessel surpasses USD 40,000.00,
excluding associated overhead costs. Since extensive offshore E&P operations em-
ploy dozens of such vessels, the logistics costs associated with a fleet of PSVs can
easily be in the hundreds of millions, on an yearly basis.

In light of the context so far presented, this dissertation introduces the platform
supply vessel operations planning problem (PSVOPP), whose general concern resides

1Crane movement to deliver/receive an item (e.g., a container).
2United States Dollar.
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in designing a tactic-operational plan to realize the transport of cargoes between an
onshore facility and maritime platforms, at a cost-effective approach.

1.1 General dissertation’s problem description

The PSVOPP consists of finding an optimal transport plan that yields: (i) a set
of clusters, i.e., groups of platforms that demand cargo transportation; (ii) a set of
routes for PSVs that can attend such a transport demand; and (iii) a time sche-
duling for such PSVs; aiming to minimize vessels usage, as well as costs related to
fuel consumption. This objective needs to encompass tactical constraints, related
to the clustering problem – such as maximum and minimum number of platforms
per cluster, maximum supply base loading time per cluster – as well as operational
ones, associated with the routing problem – including to meet the transport demand,
respecting each vessel’s capacity, and executing the offshore services as much as pos-
sible under time-related requirements. Figure 1.2 illustrates the offshore application
context for the problem treated in this dissertation.

(a) Offshore E&P in Brazil LEITE
(2012).

(b) Offshore operations example.

Figura 1.2: Application context example.

Given the aspects mentioned, the PSVOPP instantiates as follows. In large
offshore oil and gas operations, it is usual to (re)organize platforms in clusters on
a basis that mainly depends on rigs’ location changes, variations of cargoes de-
mand profile, and possibly on specific business needs, like maximum intra-cluster
distance or maximum supply base loading time per cluster. Besides, operating with
previously defined clusters provides predictability with respect to the supply base
operations, due to the anticipated allocation of a PSV per cluster and the associated
supply base time slot to operate cargoes ordered by the platforms of such a cluster.
In turn, these scheme allows the onshore supply chain backwards the base, such
as operator’s in-house tasks, contractors’ preparations, and the associated onshore
transportation, to target specific vessel departure times, since each departure is
oriented for a specific cluster.
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The problem in this process of (re)organizing clusters regularly is the lack of spe-
cialized methods to assure good quality solutions, conversely to the widely adopted
practice of developing approaches based on personalized heuristics and spreadshe-
ets. Regardless of how clusters are designed, the execution of transport activities by
PSVs is intended to fulfill, on time, orders of deck cargo, liquid, and dry bulks placed
recurrently by platforms on a daily basis. In turn, this recurrent process allows one
to regard the PSV activities as a periodic one, in the sense that platforms might
be visited at a fixed frequency, e.g., twice a week. As an example, a PSV might
visit a platform to deliver a large set of drilling pipes, whereas, in a second moment,
it could collect waste containers, and deliver chemical tanks and diesel. However,
fixing the number of visits a priori, as it is usually done in periodic schemes, can
restrict the flexibility of the transport solutions designed, leading the extra PSV
trips to accomplish orders that can not wait for certain visit day.

When a PSV is in service, pickup and delivery orders of deck cargo can concur
for its deck space, which means that this vessel can concomitantly possess delivery
and pickup orders of several platforms on its deck. With respect to tanks (or silos),
there is usually no mixing of liquid (or dry) bulks, unless it is expressly allowed.
During a route, there is no obligation for a vessel to execute simultaneous pickup
and delivery, nor to fulfill all orders placed by a platform in a single visit. Moreover,
it is possible that a different vessel attends part of that platform’s demand. As an
example, if a rig places three delivery orders, e.g., 100 m2 of deck cargo, 500 m3 of
diesel and 300 m3 of water, this demand could be split by type of commodity and
attended separately, with a single vessel in either a single visit or multiple ones, or
even with a second vessel, as long as no service time overlapping occurs. As offshore
platforms have very limited deck space, it can be desirable to enforce that all pickups
of deck cargo for certain platform be fulfilled before the deliveries of this cargo sort
for that platform. This precedence does not necessarily require that pickups be
collected immediately before deliveries. Also, establishing that rule does not mean
a PSV must firstly collects all returning deck cargoes in its route, and then perform
the deliveries.

Offshore logistics is an activity strongly dependent on service scheduling. For
instance, an order can have a deadline. As an example, pickup orders include ex-
pensive rented equipment belonging to contractors, which can result in deadlines to
have them delivered back to shore at the supply base. Beyond deadlines, a platform
can also stipulate time windows inside which the services related to the orders it
demands are preferably expected to occur. When a PSV arrives at the vicinity of a
platform, it develops a different speed to safely get closer to that installation. Part
of the PSV fleet that is not in service is available for scheduling and awaits at the
supply base’s vicinity, from which it can be scheduled in advance for one or more
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trips. It is assumed that there is no queue to access the supply base. Each of the
remainder PSVs in the fleet has an estimated time of readiness, which comprises all
necessary activities a vessel must accomplish before becoming available for use, such
as navigation back to the supply base and cargo unloading, occasional compartment
cleaning, and authority inspections. The time a PSV spends at the berth – i.e., the
mooring area in the supply base where vessels operate cargoes – results from the
amount of cargo being handled.

It is not rare that platforms can not be serviced by a vessel for some time inter-
val, especially when other conflicting operations or special circumstances take place,
such as a downtime of some cargo handling equipment (e.g., crane maintenance) or
environmental conditions regarded unsafe to operate (e.g., prohibitive wind, waves
or sea currents). Moreover, as long trips increase the transport plan’s exposure
to uncertainty, like adverse weather, it is salutary to limit how long a vessel stays
offshore, with the objective to provide predictability on the moment each vessel will
return to the base and be ready for a subsequent trip. Another concern of people
in charge of executing the daily logistics operations is performing the offshore ser-
vices in the shortest time possible, so that vessels’ availability for upcoming trips
is augmented. In this sense, a natural aspect to be optimized is the cumulative
utilization time of the fleet. Besides, since the fleet is usually chartered for longer
periods, such as a few years, there are no fixed operational costs for using a vessel,
but only variable expenses given by fuel consumption in navigation or service. Con-
jugating efficiently all these issues to achieve a good quality maritime transport plan
in offshore logistics is a problem hard to be solved, demanding specialized appro-
aches such as mathematical optimization models, conversely to person-dependent
heuristics and/or spreadsheets usually employed.

1.2 Objective and expected contributions

The main objective of this dissertation is to develop mixed-integer linear program-
ming (MILP) optimization models to solve the clustering and the vehicle routing
problem (VRP) existing in the PSVOPP. Regarding the specific dissertation contri-
butions, they can be summarized as follows.

• An MILP model for the clustering problem, named maritime platforms cluste-
ring problem (MPCP), designed as an m-dimensional multiple knapsack pro-
blem, in which PSVs assume the role of multiple, heterogeneous knapsacks
regarded as multiple-compartment resources, while maritime platforms inter-
pret m-dimensional items, in which each dimension reflects a commodity type
(e.g., deck cargo, diesel, water) to be carried in a specific, finite-capacity PSV’s
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compartment.

• Two maritime routing and scheduling MILP models for cargoes transport ac-
tivities performed by supply vessels. One of them is a rich-feature model,
named deterministic platform supply vessel routing and scheduling problem
(d -PSVRSP), consisting of a set of network and scheduling constraints that
capture several complex features present in the offshore logistics system stu-
died. The second routing model, called stochastic PSVRSP (s-PSVRSP), en-
compasses less features, however includes uncertainty data in its mathematical
modelling, being formulated as a deterministic equivalent program (DEP) that
represents a two-stage stochastic program with recourse (SPR). The routing
models developed encode objective functions that address two main concerns
in PSVs operations: vessels’ fuel costs and efficient fleet utilization.

• A solution method for the MILP model related to the d-PSVRSP that in-
tegrates rounded capacity inequalities (RCIs) adapted from LAPORTE and
NOBERT (1983) and WANG et al. (2021) as strengthening cuts to speed
up the solution process3, taking into account the cargo carrying capacity per
compartment of a vessel.

• A solution method for the MILP model related to the s-PSVRSP based on
the sample average approximation (SAA) method, including an estimate of the
optimality gap regarding the original two-stage stochastic program, based on
the procedure found in VERWEIJ et al. (2003). A solution quality evaluation
based on the computation of the value of the stochastic solution (VSS), which
measures how beneficial is to include uncertainty in the model.

• A literature review on studies that handle planning problems regarded as si-
milar to those treated in this dissertation. The review presents a classification
scheme for the routing models proposed in this work in comparison to other
studies in the area of routing, including significant features for the practical
problem.

• A set of realistic benchmark instances inspired by real logistics data of an
E&P operator and extensive computational studies on the performance of the
optimization models developed over those instances. Particularly, these models
are relevant for practical use, given the following results obtained:

– The MILP model introduced to solve the MPCP succeeded in 37% of
the instances, for which optimality was achieved within 250 seconds, on

3The RCIs conceptualization and mathematical formulation are indeed contributions, however,
the algorithms employed to separate them are not, but only their use in speeding up the solution
process of the deterministic routing model
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average, whereas the remainder 63% of them presented good quality so-
lutions with average gap value of 2.7%, within 1 h set as run-time limit.

– The MILP routing model proposed to solve the d -PSVRSP solved to
optimality 71.2% of the instances within approximately 2.5 minutes, on
average. Other 28.4% of the instances presented final gap value of 10.1%,
on average, at 0.5 h set as run-time limit. Less than 0.4% of the bench-
mark instances had no solution after 30 minutes of run-time.

– The MILP model designed to solve the s-PSVRSP could solve to optima-
lity 77.5% of the instances within approximately 450 seconds, on average.
The remainder 22.5% of the instances presented final gap value of 8.7% at
1 hour set as run-time limit. Introducing uncertainty in model indicates
savings in USD within the range 7,032.00 – 28,444.00 per route.

1.3 Dissertation’s organization

This dissertation is organized as follows. Chapter 2 contains a literature review on
studies pertinent to problems treated in this work. Chapter 3 defines the problem
treated in terms of its deterministic and stochastic aspects, as well as presents the
mathematical notation used in the MILP models’ formulations. Chapters 4, 5, and 6
present the mathematical modeling, computational studies, and discussions on the
practical applicability of the models developed to solve instances of the MPCP, d -
PSVRSP, and s-PSVRSP, respectively. Chapter 7 concludes the present work and
points out possibilities for future studies.
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Capítulo 2

Literature review

This chapter presents a literature review on the research topics pertinent to this
dissertation: clustering of maritime platforms and routing and scheduling of PSVs.
This review does not intend to be exhaustive on these topics, but only to provide a
view on what has been studied in these areas that relates to the PSVOPP.

2.1 Studies in the dissertation’s area

The problem of maritime platforms clustering in this dissertation resembles the
widely studied knapsack problem, which has as seminal books MARTELLO and
TOTH (1990) and KELLERER et al. (2004). In a knapsack problem, given a set of
items and a finite-capacity knapsack, one aims to maximize the profit obtained from
selecting a subset of these items to be carried in that knapsack, without infringing
its capacity. The problem of clustering of maritime platforms can be translated
to a knapsack-like one by interpreting such platforms as multiple-dimension items
(m-dimensional), and PSVs as heterogeneous, multiple-compartment knapsacks.

Platforms are regarded as multiple-dimension items due to the existing types of
cargo they demand, e.g., deck cargo, diesel, and water, being each of this types a
dimension. As there is a fleet of PSVs available, the problem can also be seen as a
multiple-knapsack one. The “profit"in practice arises from using the smallest possi-
ble number of PSVs (knapsacks) to form (carry) all maritime platforms (items) given.
There is a subtle difference with respect to fundamental types of knapsack problems:
every platform must be designated for a PSV, whereas not necessarily every item
must be carried in a knapsack. The literature on knapsack problems is vast, inclu-
ding variants with the so-called special constraints, such as conflicting items, items’
setups, color-constrained items, and multi-compartment knapsacks. The reader is
referred to CACCHIANI et al. (2022a) for a detailed review on single-knapsack pro-
blems, and to CACCHIANI et al. (2022b) for a review on more elaborated, intricate
variants, including the m-dimensional knapsack problems and special constraints.
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Other traditional approaches for clustering of clients as an a priori task before rou-
ting appear in the classic algorithm of FISHER and JAIKUMAR (1981) and in the
petal algorithm described by RYAN et al. (1993).

In offshore logistics, to the best of the knowledge of this dissertation’s author,
there are two studies that approach clustering of maritime platforms as a tactical
approach before routing decisions. The first one is in the work of LONGHI (2014),
in which the author developed an integer programming model to minimize the total
intra-cluster distance using instances with 60 platforms. Similarly to this disser-
tation’s study, a PSV is used as a capacitated transport resource to form clusters
of platforms ranging from 4 to 6 platforms each. The constraints presented in the
model are traditional ones, being related to the assignment of every platform to
a cluster, while respecting the vessel’s capacity. The final number of clusters is
predefined, and a single commodity is considered.

The second study appears in SOARES and LEITE (2014). The clustering ap-
proach in such a study does not aim to form final clusters for routing, but only
to partition the set of approximately 60 maritime platforms into smaller subsets
with at most 15 platforms, in a manner that increases the tractability of an MILP
routing model subsequently applied at each cluster. The authors employs two heu-
ristic methods in their cluster formation procedure: a sweep heuristics, described
in GILLETT and MILLER (1974), and a capacitated-clustering heuristics, further
detailed in KOSKOSIDIS and POWELL (1992).

Concerning the second topic of this dissertation, vehicle routing, it is a very
active research area, with huge advances in the 2000s. The books of GOLDEN
et al. (2008) and TOTH et al. (2014), as well as the paper of VIDAL et al. (2020)
provide reviews of several VRP variants and solution methods. In a few words, a
VRP consists of finding an optimal set of routes to be completed by a fleet of vehicles
in charge of attending a group of clients. Among the numerous solution mechanisms
that have been developed for routing problems, the successful heuristic approaches
include tabu search GENDREAU et al. (1994) and genetic algorithms BAKER and
AYECHEW (2003), whereas the most efficient exact algorithms are those based on
the branch-price-and-cut method PESSOA et al. (2020).

The progress achieved in solving more fundamental VRP variants provides in-
centive for one to explore challenging real life applications, which impose additional
complications, such as multiple-compartment vehicles, multiple commodities com-
peting for one of these compartments, intricate sets of constraints and, moreover,
uncertainty factors, such as weather conditions. In this sense, the so-called “rich
VRPs"emerge as routing problems whose models and solution algorithms are clai-
med proper for realistic applications. On this growing area, comprehensive surveys
and taxonomy can be found in CACERES-CRUZ et al. (2014) and LAHYANI et al.
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(2015), respectively.
The solutions for the problem of designing daily operations of PSVs have focused

on VRP-like approaches, as they provide a mathematical framework suitable to ap-
proach that problem and constitute a widely known research path in combinatorial
optimization. Aligned to that tendency, the routing problems in this dissertation
embrace real life aspects and resembles archetypal VRP types, such as the hetero-
geneous fleet VRP, the VRP with time windows, and the VRP with pickups and
deliveries.

Likewise, they present similarities with the mixed vehicle routing with pickups
and deliveries, given the requirement to check deck’s capacity at each visited node,
as pickups and deliveries of deck cargoes compete for deck space. However, classical
mixed problems impose that a client has either a pickup or delivery order, which
is not the case in the present application. Both routing models also remember the
split delivery VRP – since orders of distinct commodity types belonging to the same
platform can be delivered (or picked up) at different moments with the same vessel
or not – and the multiple trips VRP, due to the option of planning in advance two
or more routes of a PSV.

As a start point to bring some of these features to practice in the VRP theme
in offshore logistics, the paper of FAGERHOLT (2000) is one of the first works that
proposes an MILP routing model applied to PSVs fleet sizing, mix and scheduling
for the Norwegian company Equinor. The algorithm firstly enumerates all possible
routes, then allocates voyages to PSVs in a periodic scheme to minimize costs. The
author’s approach considers 150% of the average demand, besides a few qualitative
assessments to increase the solutions’ capability to deal with uncertainty. Years
later, AAS et al. (2007) developed a single PSV, pickup and delivery MILP routing
model for deck cargoes, again for Equinor operations, including not only vessel ca-
pacity constraints, but also platform’s deck space availability. In GRIBKOVSKAIA
et al. (2008), the same problem is tackled, but their work presents a construction
heuristics and a tabu search algorithm to handle large instances.

One decade past from the paper of FAGERHOLT (2000), other E&P operator
started to step into more rigorous optimization tools to improve its logistics plan-
ning. In IACHAN (2009), the evolution of Petrobras on the systematic application
of operations research is described, and efforts pointing to PSVs’ activities are repor-
ted. ALMEIDA (2009) presents a genetic algorithm to solve a pickup and delivery
maritime routing problem. Among the real life features modeled, the heuristics is ca-
pable of handling multiple commodities, heterogeneous fleet, transshipment (orders
from platform-to-platform), and time windows. LOPES (2011) proposes simplified
version to solve the routing problem tackled by ALMEIDA. The author solves such
a problem using a record-to-record travel metaheuristics. Both articles report satis-
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factory results in comparison with real operations of Petrobras at Campos basin.
In SHYSHOU et al. (2011), a large neighborhood search heuristics is developed to

solve a periodic vehicle routing problem. The central idea of the algorithmic search
is assigning feasible voyages to PSVs. HALVORSEN-WEARE et al. (2012a) propose
a similar model, yet, they treat more rigorously the scheduling aspect of the problem
related to trip duration and spread of PSVs’ departure times from the supply base.
The paper of UGLANE et al. (2012) introduces another MILP model for routing
and scheduling of PSVs with refueling tankers regarded as offshore hub structu-
res. The authors propose a Dantzig-Wolfe decomposition and a branch-and-price
methodology to solve the problem. A similar application is found in ASTOURES
et al. (2016), although no specialized solution algorithm was developed, just the
application of a commercial solver.

In SOARES and LEITE (2014), a single-commodity heterogeneous fleet routing
problem with time windows is proposed. The study’s approach is based on a cluster
first-route second strategy, using seeds and sweep heuristics initially, then an exact
model is solved. All three publications use realistic data from Brazilian Campos
Basin. SOPOT and GRIBKOVSKAIA (2014) present a pickup and delivery routing
problem with multiple commodities to plan PSV activities. The problem is solved
using a combination of variable neighborhood search and simulated annealing, al-
lowing each client to be visited at most twice to fully meet its demand. The paper
of ALBJERK et al. (2015) introduces another pickup and delivery problem solved
exactly for small instances with dynamic programming and approximately for larger
cases with variable neighborhood search. At Equinor’s request, the authors also
try to cope with delivery disruptions by formulating constraints that better encode
system’s recovery policies.

FERNÁNDEZ CUESTA et al. (2017) solves a periodic vehicle routing problem
with emergency PSV trips launched on demand to deal with surplus demand. An
adaptive large neighborhood search heuristic is used. In KISIALIOU et al. (2018b),
another periodic routing and fleet composition model for Equinor is developed and
solved with that method. In their algorithm, strategies for swapping PSVs among
routes are designed, aiming to provide tighter bounds for the cost objective. The
work of AMIRI et al. (2019) embraces routing and onshore infrastructure location.
The problem is introduced as a two-echelon mixed-integer nonlinear programming
model for the location-routing problem of supply vessels with time windows, and
solved for small instances with Lagrangian decomposition.

CRUZ et al. (2019) also compose routing and infrastructure optimization decisi-
ons in a single model. The authors present a comprehensive periodic routing model
that allows one to assess fleet composition and supply base scheduling. The solu-
tion strategy decomposes the problem in four sub-models, each of them providing
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a lower bound to the subsequent one. In that work, routes for small instances are
constrained to eight platforms, whereas for larger instances, the solution process
starts from clusters previously defined by a Brazilian E&P operator regarded as
study case. The approach found in VIEIRA et al. (2021) unifies the features seen
in KISIALIOU et al. (2018b) and CRUZ et al. (2019). It introduces a branch-and-
cut algorithm that solves small instances using an MILP periodic routing model and
an adaptive large neighborhood search is developed to handle larger instances.

Recently, two aspects have gained more attention in offshore logistics: real-
time routing, presented in KOVALSKI and QASSIM (2022), and optimization of
vessel speed, introduced in ULSRUD et al. (2022). The first study approaches the
supply vessel routing problem with random service requests treated as a Markovian
decision process to handle uncertainty regarding (non)prioritized service requests.
The model proposed optimize route decisions only after the realization of random
variables, hence it does not include any stochastic data in the MILP model. The
second study presented an adaptive large neighborhood search heuristic to optimize
routing decisions with respect to pickup and delivery orders under the influence of
weather conditions modeled as time-dependent sailing parameters, which greatly
affects vessels’ speed and their fuel consumption.

Out of the offshore logistics scope, some applications are worth to mentioned.
The work of RUSSELL and URBAN (2008) designed a tabu-search to solve a routing
problem with soft time windows and uncertain travel times, in which the corrective
actions are the extent at which a window is violated. MENDOZA et al. (2010, 2011)
model vehicles as multi-compartmentalized ones, treat the demand as stochastic, and
use detour-to-depot as a recourse decision. The articles of LI et al. (2010) and TAŞ
et al. (2014) propose another stochastic VRP with soft time windows and stochastic
travel and service times. The second stage decisions include time window violation,
but the authors also consider an extra recourse action in the form of vehicle driver’s
overtime.

CHRISTIANSEN et al. (2017) develop a multiple trip routing formulation based
on a path-flow model with case-specific constraints to handle the problem of refueling
customer ships from a given fleet of fuel supply vessels operating in the broader
area of Pireaus Port, Athens, Greece. In XU et al. (2017), another rich routing
and scheduling model is presented by the formulation of a multiple-visit routing
problem with pickups and deliveries, which also considers multiple commodities.
The application scenario is a major tobacco company in central China. The problem
consists of minimizing transportation costs related to transferring of multiple raw
material types among the company’s plants. The authors propose an exact model
and a local search heuristics to solve the problem.

SHI et al. (2018) present an application in home health care services that uses
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a routing model with simultaneous delivery and pickup of drugs and medical ins-
truments. Travel and service times are the stochastic parameters adopted and the
recourse actions designed are the unit’s caregiver remuneration for the extra working
time, total delay for all the patients in the route, and penalties for violating time
windows. The study of GUTIERREZ et al. (2018) proposes a combination of a me-
metic algorithm with a greedy randomized adaptive search procedure (GRASP) to
handle instances with uncertain pickup and delivery quantities regarded as arising
from a Poisson distribution. The author use detour-to-depot as a recourse action,
realized when the vehicle lacks the supply quantity required by the next client, or
when such a vehicle does not have enough space to receive a pickup quantity.

In LI and LI (2020), the solution approach extends the tabu seach heuristic
by introducing an adaptive aspect in the tabu list length. The authors’ method
improve the existing trade-off in longer (or shorter) tabu lists, since longer lists tend
to provide better solutions, at greater computational efforts, whereas shorter ones
may yield faster solution, yet locally optimal, possibly.

The problem of routing electric vehicles is tackled in KESKIN et al. (2021)
employing an adaptive large neighborhood search heuristic, in which the stochastic
parameter is the delay imposed to a vehicle at recharging stations. This delay may
disturb the routing schedule to the point at which performing service at a client
after the recharging process (wait in queue and charging itself) does not fit the time
window offered by the client. As a recourse decision, such a client may be skipped
and the associated costs of it considered in the problem’s second stage.

At last, still in the routing theme, the study of ZAROUK et al. (2022) introduces
a multi-objective heterogeneous vehicle routing and scheduling model with stochastic
demand, soft time windows, and variable travel times, whose objectives include
minimize fuel consumption and maximize customer satisfaction, the latter achieved
by avoiding as much as possible the occurrence of services out of their targeted time
windows. As second-stage recourse actions, the model considers a ratio of unsatisfied
customer demand.

2.2 Studies in topics correlated to the dissertation’s

area

Beyond studies focusing on optimization-centered methods for logistics problems in
the oil and gas industry, the literature demonstrates that stochastic simulation and
combinations of that technique with optimization have also been chosen to better
understand how uncertainty factors matter in decision making involving PSVs. For
example, assessing the performance of a PSV fleet size and mix using stochastic si-
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mulation appears in MAISIUK and GRIBKOVSKAIA (2014), SILVA et al. (2017),
and BASÍLIO (2017). The supply of diesel for maritime platforms’ operational
continuity is studied in DIUANA et al. (2016) and MOREIRA et al. (2019). The
authors developed simulators to compare transportation policies for such a com-
modity. In SILVA et al. (2015), another case-specific discrete-event simulator is
developed to detect bottlenecks in delivering/collecting of chemicals offshore. In
these simulation studies mentioned, the routing scheme is usually an input, and the
target is to find out good strategies to mitigate the effect of uncertainty on the daily
operations.

There have also been attempts to conjugate optimization methods and simula-
tion models, from which mixed procedures have been designed. Relevant examples
are KISIALIOU et al. (2018a) and DE BITTENCOURT et al. (2021). In those
works, the authors seek to provide optimized, yet to some extent uncertainty hedged,
routing and scheduling plans for PSVs. Beside these studies, some authors propose
planning models for PSV activities by introducing in their simulation frameworks a
few optimizing actions and stochastic parameters to cope with unexpected changes
offshore. Relevant and insightful works in this line are presented in KAISER (2010)
for oil operations in Gulf of Mexico, and LEITE (2012) for the Brazilian Campos
Basin operated by Petrobras.

2.3 Consolidated view

Concerning the topic clustering, the two studies related to the present work
are LONGHI (2014) and SOARES and LEITE (2014). The first one is based on an
exact MILP formulation, and so is the model for the MPCP. However, the model
of LONGHI includes just traditional assignment constraints, handles a single com-
modity, and minimizes total distance. Whereas the model proposed in the present
work considers additional business-pertinent constraints – such as a limitation of the
maximum number of platforms per cluster which can not operate during night-shifts
– deals with multiple types of commodities, and minimizes the number of clusters
and the berth times, which constitute conflicting objectives.

The study of SOARES and LEITE uses heuristics to form clusters of platforms
by searching for less costly solutions in terms of distance to be traveled. No special
constraints, nor multiple commodities are considered, conversely to what is proposes
in this work. The scarcity of studies related to methods for grouping maritime
platforms suitably to business conditions is notable, and the present dissertation’s
approach collaborates to reduce the existing gap with an MILP model rich in real,
practical problem aspects.

With respect to routing, Table 2.1 presents a classification scheme for the articles
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cited. The scheme is organized in eight classes: solution method, objective func-
tion (minimization), vehicle, commodity, service, route, stochastic parameter, and
recourse action. Each of these classes subsumes relevant features of the problems
tackled in those articles.

Tabela 2.1: Classification scheme for studies related to routing.

1 Solution method 2 Min. obj. function
1.1 Heuristic 2.1 Fixed cost
1.2 Exact 2.2 Variable cost
1.3 Hybrid 2.3 Utilization time

3 Vehicle 4 Commodity
3.1 Multiple vehicles 4.1 Multiple types
3.2 Heterogeneous fleet 4.2 Pickup and delivery
3.3 Multiple compartments 4.3 Transshipment

5 Service 6 Route
5.1 Time windows 6.1 Multiple visits
5.2 Service precedence 6.2 Multiple trips
5.3 Order deadline 6.3 Route duration limit

7 Stochastic parameter 8 Recourse action
7.1 Travel time 8.1 Violation (TW, overtime)
7.2 Service time 8.2 Detour-to-depot
7.3 Delay (or wait) time 8.3 Skip client (or demand)
7.4 Demand 8.4 Await

Table 2.2 shows a comparison of those articles, including the routing models
introduced, d -PSVRSP and s-PSVRSP, regarding the classes/features introduced.
In that table, the last column presents the total number of features detected per
article considering features from the class vehicle up to recourse action. The last
row indicates the occurrence of certain feature.

The 33 studies listed in Table 2.2 can be organized by the number of features
they cover in 3 groups: low, 1 to 5 features; medium, 6 to 10; and high, for 11 or
more features. This grouping reveals that 70% of the studies present a low number
of features; 24% of them have a medium number of features; and only 6% of them
include 11 or more real life aspects in their modeling. These numbers demonstrate
that there still is a relevant gap in the literature concerning feature-rich routing
applications. Particularly, the three VRP studies with the highest number of features
are ALMEIDA (2009) and the two routing models proposed in this dissertation.

Nevertheless, it is possible to observe that even in studies with less features, such
as AAS et al. (2007) and GRIBKOVSKAIA et al. (2008), relevant aspects for the
offshore logistics business are contemplated, such as pickups and deliveries, and the
possibility to perform multiple visits. On the other hand, rich-feature models like
those in ALMEIDA (2009), CHRISTIANSEN et al. (2017), and the present ones
cover broadly issues involved in routing and scheduling of PSVs.
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Tabela 2.2: Works comparison. Deterministic VRPs models range from 1 to 21 and stochastic models from 22 to 33. “TF"stands for total
features presented from classes 3 to 8.

ID Article 1 1.1 1.2 1.3 2 2.1 2.2 2.3 3 3.1 3.2 3.3 4 4.1 4.2 4.3 5 5.1 5.2 5.3 6 6.1 6.2 6.3 7 7.1 7.2 7.3 7.4 8 8.1 8.2 8.3 8.4 TF

1 FAGERHOLT (2000) X X X X X X X X 5
2 AAS et al. (2007) X X X X X 3
3 GRIBKOVSKAIA et al. (2008) X X X X X 3
4 ALMEIDA (2009) X X X X X X X X X X X X X 10
5 LOPES (2011) X X X X 2
6 SHYSHOU et al. (2011) X X X X X 2
7 HALVORSEN-WEARE et al. (2012a) X X X X X X X X 5
8 UGLANE et al. (2012) X X X X X X X X 5
9 SOPOT and GRIBKOVSKAIA (2014) X X X X X 2
10 SOARES (2014) X X X X X X X 4
11 ALBJERK et al. (2015) X X X X X X X 4
12 ASTOURES et al. (2016) X X X X X X 3
13 FERNÁNDEZ CUESTA et al. (2017) X X X X X X 3
14 CHRISTIANSEN et al. (2017) X X X X X X X X X X 7
15 XU et al. (2017) X X X X X X 4
16 KISIALIOU et al. (2018b) X X X X X X X 4
17 CRUZ et al. (2019) X X X X X X 3
18 AMIRI et al. (2019) X X X X X X X X X 6
19 VIEIRA et al. (2021) X X X X X X X 4
20 KOVALSKI and QASSIM (2022) X X X X 2
21 ULSRUD et al. (2022) X X X X X X X X 5

22 d-PSVRSP X X X X X X X X X X X X X X 11

23 RUSSELL and URBAN (2008) X X X X X X X 4
24 MENDOZA et al. (2010) X X X X X X X X 6
25 LI et al. (2010) X X X X X X X X X 6
26 MENDOZA et al. (2011) X X X X X X X X 6
27 TAŞ et al. (2014) X X X X X X X 5
28 SHI et al. (2018) X X X X X X X X X X 7
29 GUTIERREZ et al. (2018) X X X X X X 4
30 LI and LI (2020) X X X X X X 4
31 KESKIN et al. (2021) X X X X X X X X 5
32 ZAROUK et al. (2022) X X X X X X X X X 7

33 s-PSVRSP X X X X X X X X X X X X 10

− Total 19 12 2 16 30 9 29 16 6 7 13 1 18 4 5 14 4 18 4 3 3 4 6 3 2 1 −
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Concerning the solution method, 58% of the studies employ heuristic approaches;
36% of them use exact algorithms; and 6% based their solution approach in a hybrid
strategy. Since VRPs are NP-hard optimization problems and real life cases often
demand rapid, good-quality routing solutions, it is natural that have most of the
solution mechanisms be heuristic-based.

The most frequent objective function term is the variable routing cost, appearing
in 91% if the studies. This number agrees with the fact that routing applications
usually take place on a operational level, in which costs are a function of the distance
traversed and/or fuel consumed, for example. In 48% of the studies, minimizing va-
riable expenses appears combined with fixed costs for using a vehicle (or vessel). An
example of a situation that incur fixed costs is chartering an extra PSV temporarily,
e.g., just for a few trips, a decision typically made in markets that allow spot charte-
ring of vessels. Less frequently, variable costs also appear with some modeling aimed
to reduce vehicle utilization, such as minimizing final route time, which occurred in
27% of the papers cited.

With respect to the vehicle, 12% of the studies developed single-vehicle routing
model (AAS et al., 2007; GRIBKOVSKAIA et al., 2008; KOVALSKI and QASSIM,
2022; SOPOT and GRIBKOVSKAIA, 2014), since there is no mark for them regar-
ding the feature multiple vehicles in the vehicle class. The other 88% of the papers
considered a fleet of vehicles is available for use. Roughly 50% of the studies ela-
borate their models considering an heterogeneous fleet, whereas 18% of them cover
the multi-compartment aspect.

Only 21% of the articles treat their routing problems as multiple commodity ones,
despite oftentimes in real life the problems have more than one commodity type,
specially in offshore logistics. However, there has been a concern towards including
not only delivery orders, but pickups too, as can be seen in 39% of the studies cited.
In offshore logistics, deck cargoes are continuously demanded, on a daily basis,
having orders placed more frequently and steadily than diesel, water, and drilling
bulks. Yet, the demand of such orders are not negligible in volume, usually takes
long pumping times to a platform, and greatly affects the service time scheduling
component of the problem. The genetic algorithm of ALMEIDA (2009) is a rather
comprehensive study that includes various commodity types, pickups/deliveries, and
still transshipment orders (platform-to-platform).

Regarding the service class of features, Table 2.2 shows that time windows are
the most relevant aspect in planning a service, as 54% of the studies include this
feature in their models. Indeed, whether offshore or onshore, time windows provide
valuable planning information to logistic operations, as well predictability to clients.
Following time windows by far come service precedence and deadline with roughly
15% of occurrence each.
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On the route specifics, 54% of the studies limit the route duration, 42% of them
provide models able to cope with multiple visits per client, and only 12% allow
planning in advance for more than one trip1. All of these features are relevant for
practical purposes, as they yield fine-grained planning, which in turn collaborate to
better fulfilling the requested offshore services.

Beyond the features so far seen, Table 2.2 also shows what has been studied
in terms of uncertainly modeling and associated recourse actions. The stochastic
parameters listed in Table 2.1 appear practically uniformly among the studies that
include random data in their models, which correspond to 11. Each of these para-
meters is present in nearly 32% of the cases. Besides, three studies consider both
travel and service times as random parameters in their models. On the other hand,
assuming violation as a recourse action is the most frequent option, responding for
55% of the studies, followed by detour-to-depot with 27%, skip client with 18%, and
awaiting with just one study that also considers violation as a corrective action.

1Assuming a route is made of one or more vehicle trips, and a trip made of: departure from a
supply base, offshore services’ realization, and return to that base
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Capítulo 3

Problem definition

This chapter defines the PSVOPP in terms of its decisions related to clustering of
maritime platforms, as well as routing and scheduling of PSVs. In this dissertation,
the clustering problem in the PSVOPP is referred to as maritime platforms clustering
problem (MPCP), whereas its routing facet is separated in other two problems, the
deterministic platform supply vessel routing and scheduling problem (d -PSVRSP),
and a variant of it including uncertainty, named stochastic PSVRSP (s-PSVRSP).

The clustering and routing problems share some characteristics. As an example,
the three problems involve knowing in advance the platforms’ locations, PSV fleet
capacity, and cargoes demand. The main aspects of each MILP routing model al-
ready appear in Table 2.2, however, a major difference in the s-PSVRSP compared
to its deterministic variant is the introduction of uncertainty data in model. Given
the relations existing in the problems that compose the PSVOPP, the sections 3.1
and 3.2 present a joint definition for them, separating aspects assumed as determi-
nistic ones from those considered stochastic. Section 3.3 summarizes the notations
introduced.

3.1 Deterministic aspects

Offshore platforms, belonging to a set denoted by C, are organized into smaller sub-
groups called clusters, following some tactical-level requirements. As en example,
each cluster should respect limitations on the minimum and maximum number of
platforms, denoted by F and G, respectively, and on the maximum distance between
any two platforms of it, denoted by E. Let V denote a set of PSVs. Together,
the platforms of a cluster should approximately correspond, in amount of cargo
demanded for delivery on a regular basis, to the capacity of a PSV k ∈ V , denoted
by Qk

q , q ∈ Q, in which Q is the set of cargo carrying compartments.
PSVs have varying sizes, which are expressed in deadweight tonnage (DWT)

values. For instance, a PSV4500 is capable of carrying 4500 tons, including weights of
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cargo, fuel, fresh water, ballast water, provisions, passengers, and crew. Usually, the
offshore supply service industry in E&P offers PSV1500, PSV3000, and PSV4500,
which in the context of this dissertation are regarded as small (S), medium (M),
and large (L) PSV sizes, respectively, with sizes DWTk ∈ {1500, 3000, 4500}, k ∈
V . The capacities adopted per commodity type for these PSV sizes are defined in
the Appendix.

Clusters can then be designed by designating platforms to vessels available at
different sizes, respecting each vessel’s compartment capacity. Usually, only the lar-
gest vessels are considered, as they leverage the cargo transport capacity. However,
smaller ones can also be used for less cargo-demanding clusters. Case a vessel k ∈ V
is selected for a cluster design, a non-dimensional ratio expressed by

Rk =
maxk∈V

{
DWT k

}
DWT k

, (3.1)

is defined as a cost associated to that selection. Such a cost prioritizes the use of
larger vessels.

Let P denote the set of commodity types demanded by the platforms of a cluster.
Every type of commodity is compatible with exactly one vessel’s compartment type,
but different commodities may be allowed to share the same compartment space. Let
Pq ⊆ P denote the set of commodity types that are compatible with compartment
type q ∈ Q.

Per cluster, it is accepted at most H platforms with impossibility to operate with
a PSV during night-shifts of onboard personnel. An indicator parameter, defined
by Ic ∈ {0, 1}, c ∈ C, informs what platform can (Ic = 0) or can not (Ic = 1) be
serviced during the night. The platforms of a cluster request delivery orders whose
average demand over a period of six months is denoted by Ucp, c ∈ C, p ∈ P . This
demand should be handled at a supply base berth1. In turn, this requires a supply
base berth time slot to operate the cargoes associated with such a demand. The
berth limit slot to operate of a vessel is limited to BT hours per cluster.

At a berth, a vessel can operate commodities simultaneously, i.e., in parallel,
for example: deck cargo being handled by crane lifts while, simultaneously, a hose
is connected to that vessel to pump first water into it, than diesel afterwards. In
other words, water and diesel are transferred serially, meanwhile crane lifts happen.
Therefore, two additional commodity sets to represent this pair of ongoing operations
for a vessel are defined: P1,P2 ⊂ P . Performing such a parallelism is not an
obligation, actually, it is very context dependent – e.g., cargo transportation urgency,
availability of berth time slots, and operations safety matters – thus, it is a decision

1A berth is a supply base area that accommodates transport resources, such as ships, intended
to develop cargo handling operations.
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commonly made moments before a loading operation starts. However, for planning
purposes of berth operations, parallelism is considered.

Let O denote the set of pickup and/or delivery orders requested by platforms in C
on a daily basis. Let P−,P+ ⊆ P denote the sets of commodity types that are ready
to be picked up and delivered, respectively. The (un)loading rate of commodity
p ∈ P at the supply base is σp per unit.

Order i ∈ O represents either delivering to or picking up at platform ci ∈ C some
commodity pi ∈ P in quantity Di ∈ {Lip, Bip}, with its offshore service time being
STi =

∑
p∈P ϕp (Lip +Bip), in which Lip and Bip are delivery and pickup quantities,

respectively, ϕp is the efficiency for (un)loading cargoes that ci develops to handle
p. Let O− := {i ∈ O : pi ∈ P−} denote the set of pickup orders. Associated with
pickup order i ∈ O− is a due time DTi by which the task of unloading this order
at the supply base has to be finished. For any platform c ∈ C, offshore service
overlapping is not allowed among its requested orders.

The service time for order i at platform ci is expected to fall entirely within
exactly one time window of the time windows set, denoted by Wi. Time window
h ∈ Wi is encapsulated by an earliest and an latest time point, ETih and LTih,
respectively. Case the service start time of i violates ETih, the violation extent is
charged hourly by at penalty ζi. Similarly, case the service finish time of i violates
LTih, a penalty βi = 2ζi is charged hourly for the violation extent. Violating LTih

causes greater impact in the offshore operations than ETih, as finishing a service later
than LTih damages the predictability of services ahead in the route, so the penalty
value doubles. Waiting is allowed before a vessel starts to serve some ci ∈ C, i ∈ O.

A PSV k ∈ V becomes available for loading at the supply base only at moment
AT k. If it is not used at that moment, it is assumed it awaits for use at the onshore
base’s vicinity. When vessel k ∈ V travels the distance Dcicj , i, j ∈ C from ci to cj,
given ci, cj ∈ C, i, j ∈ O ∪ {0}, i ̸= j, it takes setup time SEk to leave ci, navigation
time Nk

ij from i to j, and safe positioning time SP k before start to operate at cj.
For convenience, it is utilized the index 0 to represent the onshore base and c0 := 0.
Therefore, the total travel time from ci to cj is given by:

T k
ij =

SEk +Nk
ij + SP k, ci ̸= cj, i, j ∈ O ∪ {0}, i ̸= j

0, ci ≡ cj, i, j ∈ O ∪ {0}, i ̸= j
(3.2)

A trip is a sequence of the following tasks associated with a vessel: (i) loading
onto that vessel at the onshore base the commodities that are ready to be delivered;
(ii) serving orders offshore (including delivery and/or pickup orders); (iii) unloading
onto the onshore base the pickup commodities collected along this trip. Vessel k ∈ V
is allowed to perform at most Lk consecutive trips, while every trip’s duration should
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not exceed TDk. A route is a set of one or more consecutive trips performed by a
vessel.

Assuming a fleet of PSVs is already chartered for a few years, there will be no
operational costs related to vessels’ daily rates. It is also assumed that there is no
short-term PSVs’ chartering for one to accomplish a few offshore services. With that
given, the quantities of interest for the routing problem resides in the operational
level, being specifically the fuel expenditures and vessel utilization time. The fuel
expenditure is defined as follows. Every vessel k ∈ V available at AT k, which has not
been scheduled to accomplish a route, awaits at the base’s vicinity consuming fuel
at hourly price θk. Case k is scheduled, it consumes fuel at hourly prices denoted by:
φk, which is the fuel cost per hour when k is operating at the supply base; γk, which
is the fuel cost per hour when k is navigating; and δk, which is the fuel cost per
hour when k is enrolled in offshore, service-related tasks, such as cargo handling,
waiting times, or setups. Vessel times related to setup when leaving a platform,
safe positioning when arriving at it, as well as hourly costs related related to fuel
consumption for each vessel in its various modes (navigation, service, waiting and
setups), are all defined in the Appendix.

The vessel utilization time comprehends the time interval starting at AT k, for
vessel k ∈ V , and finishing by the end of such a vessel’s route 2. Let ξk be a non-
dimensional, positive factor devised for each k ∈ V to promote the use of smaller
vessels whenever possible at each routing opportunity, implicitly leaving more vessel
capacity for future use in the daily logistic routine. This parameter is defined in
the Appendix, specifically in 7.1.

The goal of MPCP is to decide for a feasible set of maritime platform clusters,
such that the number of clusters and berth times are minimized, as well as tactical
requirements are respected. Regarding the routing problems, the goal of the d -
PSVRSP is to decide for a feasible set of routes and schedules for PSVs such that
fuel costs and vessel utilization times, are minimized as a composite function α-
weighed, while all operational requirements are met, such as orders fulfilled, and
constraints respected, including vessels’ capacity and time-related requirements.

3.2 Stochastic aspects

The transport of cargoes in offshore logistics is subjected to uncertainties. There-
fore, the transport plans can be perturbed or even flaw. There are two classes of
uncertainty that logistics planners and analysts in offshore logistics attempt to cope
with: endogenous and exogenous.

2The route of vessel k finishes when the last pickup of the last trip performed is unloaded onto
the base.
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Endogenous uncertainty manifests in several ways, such as: (i) a PSV fault,
what temporarily removes the resource from operations to be repaired (corrective
maintenance); (ii) a transitory unavailability of a platform to receive its orders due
to a shortage of platform’s deck space, in turn caused by an excess of pickups on
board; (iii) a conflict created by the impossibility for a PSV to serve a platform,
given an there already exists another operation ongoing, like personnel diving for
inspection, causing the vessel to wait in queue; and (iv) fluctuations on the efficiency
to transfer cargo to the platform, or from it to the vessel.

Exogenous uncertainty is preponderantly originated from environmental condi-
tions, which are obviously uncontrollable. The major factors influencing the vessel’s
performance offshore are wind, sea current and waves. Depending on their severity,
isolated or combined, the transferring of cargoes between a PSV and a platform can
be simply delayed to start, interrupted, or even canceled.

In this dissertation, only the exogenous uncertainty is considered, being regarded
as delays that “push"the service start moment ahead in time, at a duration corres-
ponding to the delay size. It is assumed that such delays arise from unfavorable
offshore environmental conditions, which temporarily prohibits a vessel to operate,
resulting in unplanned waiting times offshore. Other performance-related variations
such as navigation velocity and cargo loading/unloading rates are assumed to be
minor, therefore considered as deterministic. These delays are modeled as follows.

After certain vessel k ∈ V finishes the travelling from platform ci to platform
cj, given ci, cj ∈ C, i, j ∈ O ∪ {0}, i ̸= j, it can encounter environmental conditions
prohibitive to perform order’s j service safely, which in turn disturbs the offshore
agenda planned for that vessel, for platform cj, and for subsequent platforms in the
route. In this context, it is defined a set of scenarios Ω and a stochastic parameter
Siw ⩾ 0, i ∈ O ∪ {0}, ω ∈ Ω to represent exogenous uncertainty that manifests as
a delay originated from those unsafe operational conditions, which leads to waiting
times before starting to serve order j. All delays a vessel can incur offshore also
represent extra costs related to δk, the fuel consumption cost when k is offshore in
service or waiting, planned or not.

Within the described context, the goal of the s-PSVRSP is to decide for a feasible
set of routes and schedules for PSVs such that the total fuel cost is minimized,
while all operational requirements are met, such as orders fulfilled, and constraints
respected, including vessels’ capacity and time-related requirements. In addition
to that, such a goal must also provide mechanisms to mitigate, whenever possible,
realizations of exogenous uncertainty, which impact the offshore logistic services
negatively.
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3.3 Consolidated notation

The notation presented in sections 3.1 and 3.2 is summarized as follows.

Sets
C Set of maritime platforms, defined as: C := {1, 2, . . . , b}.
P Set of commodity types.
P− ⊆ P Set of commodity types that are ready to be picked.
P+ ⊆ P Set of commodity types that are ready to be delivered.
P1 ⊂ P Subset 1 of commodities allowed to operate in parallel at a berth.
P2 ⊂ P Subset 2 of commodities allowed to operate in parallel at a berth.
O Set of orders requested by maritime platforms, defined as:

O := {1, 2, . . . , n}.
O− Set of pickup orders, defined as: O− := {i ∈ O : pi ∈ P−}.
Wi Set of time windows for order i ∈ O requested by platform ci ∈ C.
V Set of PSVs.
Q Set of compartment types for a vessel.
Pq ⊆ P Set of commodity types compatible with compartment type q ∈ Q.
Ω Set of scenarios.

Parameters
F Minimum number of platforms per cluster.
G Maximum number of platforms per cluster.
H Maximum number of platforms per cluster that can not operate during

night-shifts.
E Maximum distance between any two platforms of a cluster.
BT Maximum supply base berth time per cluster.
Ic An indicator parameter, defined by Ic ∈ {0, 1}, c ∈ C, to inform what

platform can (Ic = 0) or can not (Ic = 1) be serviced during night-shifts.
DWT k Deadweight tonnage of vessel, given by DWT k ∈ {1500, 3000, 4500}, k ∈ V .
Rk Cost associated with selecting vessel k ∈ V to design a cluster, defined

in 3.1.
ϕp Loading/unloading rate of commodity p ∈ P at a platform.
σp Loading/unloading rate of commodity p ∈ P at the supply base.
Bip Pickup quantity of commodity p ∈ P , for order i ∈ O.
Lip Delivery quantity of commodity p ∈ P , for order i ∈ O.
Ucp Average demand of commodity p ∈ P for platform c ∈ C.
Di Quantity of commodity pi ∈ P for order i ∈ O to be either delivered to or

picked up at platform ci ∈ C.
STi Service time for order i ∈ O.
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ETih Earliest time point for time window h ∈ Wi for order i ∈ O.
LTih Latest time point for time window h ∈ Wi for order i ∈ O.
ζi Penalty per hour for violating ETih, i ∈ O, h ∈ Wi.
βi Penalty per hour for violating LTih, i ∈ O, h ∈ Wi, defined as: βi = 2ζi.
DTi Due time for pickup order i ∈ O−, by which the task of unloading this

order onto the onshore base has to be finished.
Qk

q Capacity of compartment type q ∈ Q for vessel k ∈ V .
AT k Moment at which vessel k ∈ V becomes available for loading at the base.
Nk

ij Navigation time for vessel k ∈ V from ci to cj, for ci, cj ∈ C, i, j ∈ O∪{0},
i ̸= j.

SEk Setup time for vessel k ∈ V before it departures from a platform.
SP k Safe positioning time for vessel k ∈ V when arriving at a platform.
T k
ij Total travel time for vessel k ∈ V from ci to cj, ci, cj ∈ C, i, j ∈ O∪{0}, i ̸=

j, defined in 3.2.
Lk Maximum number of consecutive trips allowed for vessel k ∈ V .
TDk Maximum trip duration for vessel k ∈ V .
θk Fuel cost per hour for k ∈ V awaiting at the base’s vicinity.
φk Fuel cost per hour for k ∈ V operating at the supply base.
γk Fuel cost per hour for k ∈ V in navigation.
δk Fuel cost per hour for k ∈ V enrolled in service-related tasks offshore, such

as cargo handling, waiting times, or setups.
ξk Non-dimensional, positive factor devised for each k ∈ V to promote the use

of smaller vessels.
α Weight parameter, defined as: α ∈ [0, 1].
Siw Delay that a vessel incurs before serving order i ∈ O ∪ {0} at scenario

ω ∈ Ω.
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Capítulo 4

Clustering of maritime platforms

This chapter contains the mathematical modeling of the MPCP. Besides, it also
presents a series of experimental results obtained from solving artificial instances
inspired from real life data of an oil and gas operator that develops its offshore
logistics activities in southeast Brazilian waters, and a discussion on the practical
application of the method proposed.

4.1 Mathematical modeling

This section presents an MILP formulation for the MPCP.

4.1.1 Specific notation

This section presents the notation necessary specifically for the MPCP.

Sets
C Set of maritime platforms, defined as: C := {1, 2, . . . , n}.
D Set of combinations of platform pairs, defined as:

D := {(c′c′′) ∈ C × C : c′ ̸= c′′, c′ < c′′}.
P Set of commodity types.
P1 ⊂ P Subset 1 of commodities allowed to operate in parallel at a berth.
P2 ⊂ P Subset 2 of commodities allowed to operate in parallel at a berth.
V Set of PSVs.
Q Set of compartment types for a vessel.
Pq ⊆ P Set of commodity types compatible with compartment type q ∈ Q.

Parameters
F Minimum number of platforms per cluster.
G Maximum number of platforms per cluster.
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H Maximum number of platforms per cluster that can not operate during
night-shifts.

E Maximum distance between any two platforms of a cluster.
BT Maximum supply base berth time per cluster.
Ic An indicator parameter, defined by Ic ∈ {0, 1}, c ∈ C, to inform what

platform can (Ic = 0) or can not (Ic = 1) be serviced during night-shifts.
Rk Cost associated with selecting vessel k ∈ V to design a cluster, defined

in 3.1.
σp Loading/unloading rate of commodity p ∈ P at the supply base.
Ucp Average demand of commodity p ∈ P for platform c ∈ C.
Qk

q Capacity of compartment type q ∈ Q for vessel k ∈ V .
α Weight parameter, defined as: α ∈ [0, 1].

4.1.2 Modeling

This section presents an MILP formulation for the MPCP. The constraints and
objective function of this formulation are introduced in “blocks". The first block
presents knapsack-like constraints to associate platforms to vessels. The second
block defines constraints that impose limits on the number of platforms per cluster.
The third block models constraints to limit the number of platforms, per cluster,
which can not operate with PSVs during night shifts. The fourth block constrains
the distance among the platforms of a cluster. The fifth block defines the loading
time at the supply base that each cluster generates. The last block presents the
objective function.

Knapsack constraints. Given a vessel k ∈ V , which plays the role of a knapsack,
let a binary variable yk be 1 if and only if k is used, and a binary variable xk

c be 1

if and only if maritime platform c ∈ C, playing the role of an item, is designated to
k. Constraints (4.1) enforce that every maritime platform must be designated for
a vessel. Constraints (4.2) impose that the capacity of a vessel’s compartment be
respected regarding the commodity it is allowed to carry.∑

k∈V

xk
c = 1 ∀c ∈ C (4.1)∑

p∈Pq

∑
c∈C

Ucpx
k
c ⩽ Qk

qy
k ∀k ∈ V ,∀q ∈ Q (4.2)

Cluster’s size limitation constraints. Constraints (4.3) impose a minimum
number of platforms per cluster. This constraint is included in the model only if

27



F > 1. Constraints (4.4) impose a maximum number of platforms per cluster.∑
c∈C

xk
c ⩾ Fyk ∀k ∈ V (4.3)∑

c∈C

xk
c ⩽ Gyk ∀k ∈ V (4.4)

Night-shift limitation constraints. Constraints (4.5) impose a maximum num-
ber of platforms per cluster that are not allowed to have vessel operations at night.∑

c∈C

Icx
k
c ⩽ Hyk ∀k ∈ V (4.5)

Intra-cluster distance limitation constraints. Let a binary variable uk
ĉc̄ be 1

if and only if platforms ĉ, c̄ ∈ C are designated to vessel k ∈ V . Together, cons-
traints (4.6) and (4.7) impose a maximum distance between any two platforms of a
cluster.

uk
ĉc̄ ⩾ xk

ĉ + xk
c̄ − 1 ∀k ∈ V ,∀(ĉ, c̄) ∈ D (4.6)

Dĉc̄u
k
ĉc̄ ⩽ Eyk ∀k ∈ V ,∀(ĉ, c̄) ∈ D (4.7)

Supply base loading time limitation constraints. Let a binary variable mk

be 1 if and only if the commodities loaded by vessel k ∈ V and associated with
set P2 result in a berth time greater than that obtained from commodities in P1.
Let a non-negative variable tk denote the supply base loading time for vessel k.
Let a non-negative variable d denote an upper bound for any supply base loading
time. Constraints (4.8) impose an upper bound on any vessel’s loading time. Cons-
traints (4.9) impose a maximum loading time. Constraints (4.10)– (4.13) define the
supply base loading time for a vessel k as follows. Constraints (4.10) and (4.11)
define the cumulative berth time for k according to the commodities that appear in
P1, whereas constraints (4.12) and (4.13) define the cumulative berth time for such
a vessel according to the commodities that appear in P2. The berth time will result
as the maximum time among the cumulative berth times produced from P1 and
P2. If mk = 0, the berth time tk will be defined by constraints (4.10) and (4.11),
i.e., it will arise solely from summation of the times related to handling the cargoes
whose commodity types appear in P1. In turn, constraints (4.12) and (4.13) will be
not binding. Case mk = 1, the berth time tk will be defined by constraints (4.12)
and (4.13), i.e., it will arise solely from summation of the times related to han-
dling the cargoes whose commodity types appear in P2. In turn, constraints (4.10)
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and (4.11) will be not binding. The big-M value M1 is defined in the Appendix.

tk ⩽ d ∀k ∈ V (4.8)

tk ⩽ BTyk ∀k ∈ V (4.9)

tk ⩾
∑
c∈C

∑
p∈P1

σpUcpx
k
c ∀k ∈ V (4.10)

tk ⩽
∑
c∈C

∑
p∈P1

σpUcpx
k
c +M1m

k ∀k ∈ V (4.11)

tk ⩾
∑
c∈C

∑
p∈P2

σpUcpx
k
c ∀k ∈ V (4.12)

tk ⩽
∑
c∈C

∑
p∈P2

σpUcpx
k
c +M1(1−mk) ∀k ∈ V (4.13)

Objective function. The problem’s objective is to minimize the number of clusters
and the berth time bound from a composite function weighed by α. This objective
is presented in (4.14).

Min
y,d

α
∑
k∈V

Rkyk + (1− α)d (4.14)

The goal of the MPCP is to perform the minimization expressed in (4.14), including
decision variables subject to constraints (4.1) – (4.13).

4.2 Computational studies

In this section the instances generation process is described, as well as the compu-
tational results obtained from applying the method proposed to solve the MPCP.
Implementations are made in Python 3.10.6 and all MILP models are solved using
the Gurobi Optimizer 10.0.0 through the Python application programming interface,
with all settings default, except the following: MIPGap = 0.5%, TimeLimit = 3600

seconds, NoRelHeurWork = 7, MIPFocus = 3, Cuts = 1, and Threads = 1.
The gap value reported by the solver is defined as: gap = UB−LB

UB
× 100, in which

UB stands for “upper bound"and LB stands for “lower bound". These parameter
values were defined empirically from some tests made with a few instances, from
which solutions were obtained faster than in the case that only the solver’s default
parameters were set. The NoRelHeurWork parameter intensifies the heuristic sol-
ver’s search for solutions before the internal solver’s solution process starts, which
leads one to obtaining primal solutions of good quality. The MIPFocus parame-
ter intensifies the solver’s effort to improve the lower bound of the problem. The
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Cuts parameter promotes a moderate generation of cutting planes to speed up the
solution process. The Threads parameter limits the number of processing threads
offered to the solver. Higher values for this parameter deliver more processing power
for the solver to manage along its solution process. The reader is referred to the
solver’s website GUROBI (2023) for further details about these parameters.

All computations were performed on an Intel Xeon CPU W-10885M running
at 2.40 GHz. A total of 32GB of available RAM was shared among 12 copies of
the model running in parallel. Each instance was solved by one copy of the model
using a single thread. All CPU times and relative optimality gap values presented
as results in this section are calculated as arithmetic means.

4.2.1 Benchmark instances

A set of 87 platforms belonging to two oil and gas basins is considered for the
instances’ design. The location of these platforms are illustrated in Figure 4.1.
There are 10 clusters identifiable as BCa, BCb, . . . , ESc, which correspond to 35
platforms, whereas the cluster information for other 52 platforms was not available
for studies at the time that data was collected. These platforms whose clusters
are not defined appear in the figure with as a generic label “NAv", which stands
for “not available". Some descriptive statistics about the 87-platform group are:
the closest platform from the supply base is located at 93 km and the farthest at
213 km. Among the platforms, the minimum distance is nearly zero km (side-by-side
platforms), the average is 41 km, the maximum is 134 km, and 90% of the platforms
locate within 80 km from each other.

Figura 4.1: Platform clusters and supply base locations.

The instances were generated always with 87 platforms. The parameter values
used to produce different instance versions were: α ∈ {0, 0.25, 0.5, 0.75, 1}, G ∈
{4, 5}, and Dij ∈ {80, 45}, i, j ∈ C. The design of clusters use to consider a fixed
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demand for each commodity type. Yet, aiming to mimic some variability over time,
which could trigger a clusters’ reconfiguration, the demand of diesel and water was
assumed to variate, since not all platforms demand diesel and/or water. Thus, it
was adopted 3 combinations of demand values for diesel and water, in addition to
the parameters α, G, and Dij already selected to variate. The demand of deck cargo
is assumed constant, and so are the values of the following parameters: F = 3,
H = 3, and BT = 15 hours. In total, the number of feasible instances generated is
3comb ×5α×2G×2Dij

= 60, in which “comb"stands for the diesel and water demand
profile combinations, whereas the other subscript indexes refer to the parameter
selected to vary. Regarding the vessels, also a total of 3 combinations of mixed-size
PSVs fleet, i.e., M and L, containing 29 PSVs each fleet, were made available for every
instance. Such combinations do not interfere in the total number of instances, as
they are generated together with the 3 demand profiles of diesel and water.

4.2.2 Performance

This section demonstrates the overall performance of the MILP model developed to
solve the MPCP. Figure 4.2 presents a few clustering optimal solution examples for
α = 1. Figure 4.2a presents a solution limited to 80 km of maximum intra-cluster
distance. It can be noted that many clusters have their platforms considerably
distant from each other, such as clusters C4 and C8. In Figure 4.2b, there are more
clusters with smaller distances among their platforms. Clusters C1, C8, and C14 are
pertinent examples of this new configuration. However, there still are clusters whose
platforms’ locations are relatively scattered, such as C6 and C12. In fact, this can
happen for example due to the existence of constraints related to vessel’s capacity
and night-shift limitations, which can impose alternative cluster configurations.

(a) Max. intra-cluster distance: 80 km. (b) Max. intra-cluster distance: 45 km.

Figura 4.2: Example of clustering solutions for α = 1.
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With a few solution examples introduced, now the overall results obtained from
applying the model to the 60 instances are presented. Table 4.2 reveals the model’s
performance to solve instances that result in MILP models with 30 non-negative
real variables, 111070 binary variables, and 217413 constraints. In that table, #ins,
#opt, and #tlf stand for number of instances, number of instances deemed optimal,
and number of time limit feasible (sub-optimal) instances, respectively.

Tabela 4.2: Overall performance of the MILP model to solve the MPCP.

#ins #opt time (s) #tlf gap (%)
60 22 250.4 38 2.7

Table 4.2 shows that only 37% of the instances were solved to optimality within
250.4 seconds, on average. Despite not achieving optimality in 63% of the instance
set, the quality of the sub-optimal solutions is good, as their average gap is 2.7%,
obtained within 3600 seconds set as run-time limit.

4.2.3 Effect of the composite objective function

Table 4.3 presents results regarding the impact of the composite objective function
for instances pivoted by α. Among the optimal solutions, it can noted that higher α-
values tend to promote more optimal solutions with significant run-time reduction.
An opposite behavior passes for time limit feasible instances.

Tabela 4.3: Composite objective function’s effect on model’s performance for ins-
tances pivoted by α.

α #ins #opt time (s) #tlf gap (%)
0 12 1 902.2 11 4.8

0.25 12 – – 12 2.8
0.5 12 1 203.4 11 1.2
0.75 12 8 505.3 4 0.7
1 12 12 30.0 – –

Total 60 22 250.4 38 2.7

For α = 0, a single instance took roughly 10 minutes to be solved, whereas for
α = 1 all of them were solved on average in 0.5 minute, one order of magnitude less.
As a consolidated view, optimizing an objective function that minimizes only the
number of clusters, achieved when α = 1, requires less computational efforts than
minimizing solely an upper bound for all clusters’ berth times, given by α = 0. In
other words, the model revealed to be more tractable for α = 1.

Table 4.4 presents clustering results. In that table, “opt"and “tlf"stand for op-
timal and time limit feasible groups of results, respectively. The group of results
under “opt"(“tlf") in that table refers to the optimal (time limit feasible) results in
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Table 4.3. The columns named nclu, nplat, and bt signify number of clusters, plat-
forms per cluster, and berth time, respectively, all of them related to their final
solutions.

Tabela 4.4: Composite objective function’s effect on clustering results for instances
pivoted by α. † Arithmetic mean.

α opt tlf
n†

clu n†
plat bt† (h) n†

clu n†
plat bt† (h)

0 29.00 3.00 5.13 29.00 3.00 5.38
0.25 – – – 21.58 4.04 7.14
0.5 22.00 3.95 6.74 20.00 4.40 7.80
0.75 20.00 4.39 7.67 20.00 4.39 7.90
1 20.00 4.39 8.60 – – –

Total 20.50 4.31 8.02 23.11 3.88 6.90

From Table 4.4, one can note that setting α = 0 leads to solutions with the
maximum number of clusters, i.e., nclu = 29, which precisely is the PSV’s fleet size
made available for the 87 maritime platforms of each instance. In other words,
fixing α at zero communicates to the model no concern regarding the number of
clusters in the final solution, which in turn leads to designating as less platforms as
possible per vessel to achieve the smallest berth times. This is demonstrated by the
average number of platforms nplat = 3.00, which leaves constraints 4.3 active in the
final solution, and by the average berth time, corresponding to bt = 5.13 hours for
optimal solutions, and to bt = 5.38 hours for sub-optimal ones (time limit feasible).

In the other extreme, i.e., α = 1, the minimum number of clusters is obtained,
nclu = 20.00, on average among all instances. This means that there are more
platforms per clusters and, consequently, longer berth times, which is explained
by the increase in the number of platforms per cluster, nplat = 4.39, on average,
indicating the existence of some clusters with 5 platforms, and by bt = 8.60 hours.
For α ∈ {0.25, 0.5, 0.75}, the conflict between the two objectives, i.e., minimizing
the number of clusters and associated berth times, turns more evident, given the
existence of a tendency indicating that the average number of clusters reduces at
the cost of increasing the average berths times.

4.3 Discussion on the practical application

The MILP model designed to solve instances of the MPCP consists of a suitable
mathematical representation of various real aspects inherent to the problem, which
are important to be considered jointly in decisions related to clustering of platforms.
The model allows one to solve 37% of the instances designed optimally within the
relative optimality gap value of 0.5% (the tolerance specified) in 4.2 minutes, on
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average. For the remainder 63% of the instances, the model produced good quality
solutions, what is demonstrated by their average relative gap value of 2.7%, obtained
within 1h (run-time limit). In practice, these numbers indicate that it would be
reasonable to use such a model in real life operations. These results also pave
path for redesigning clusters on a shorter term, e.g., a week ahead, which can be
advantageous to reduce deviations between the logistic service plan and the offshore
operational context.

Another relevant standpoint to interpret the results obtained resides in what
value to choose for α, in practice. Typically, it is desirable to concomitantly minimize
both quantities: number of clusters and berth times. The first leads to hire less
transportation capacity on the medium term, assuming one vessel is enough, in
cargo capacity per route, to attend a cluster. The second results in less demand for
supply base berths, what in turn can promote cost reductions for avoiding to charter
extra berth time. A decision that integrates these benefits mentioned and, in the
scope of the instances employed, significantly assures optimality can be made for
α = 0.75. This is demonstrated by: (i) Table 4.3 – given that 67% (8 out of 12) of the
instances for α = 0.75 were solve optimally, and the 33% of sub-optimal instances
presented low average gap of 0.7% – and (ii) Table 4.4, given that the number of
clusters and platforms per cluster achieves their best values, i.e., nclu = 20.00 and
nplat = 4.39, on average.
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Capítulo 5

Routing and scheduling of platform
supply vessels

This chapter contains the mathematical modeling of the d -PSVRSP. Besides, it also
presents a series of experimental results obtained from solving artificial instances
inspired from real life data of an oil and gas operator that develops its offshore
logistics activities in southeast Brazilian waters, and a discussion on the practical
application of the method proposed.

5.1 Mathematical modeling

This section presents an MILP formulation for the d -PSVRSP. Firstly, the formu-
lation does not regard the problem as a periodic one in the sense of fixing a priori
the number of visits that a platform can have within a pre-specified time horizon
or even within a trip. The periodic aspect in the present problem relies only on
the fact that each cluster’s platforms place cargo delivery and pickup orders daily,
which in turn are attended from a fixed, regular, and previously defined scheme of
PSV daily departures from the supply base.

Secondly, the formulation proposed actually routes PSVs to “visit"cargo orders,
which means that when a vessel arrives at a platform, it does not necessarily have to
fulfill all orders requested by such a platform at a single visit. As a platform and the
orders placed by it share the same location coordinates, the sequence of platforms
visited implicitly results from the routing solutions found with the MILP model for
the d -PSVRSP. Figure 1.2b illustrates a few routing examples that consider orders
as visit nodes, instead of platforms themselves. The formulation also allows multiple
visits at a platform per trip, with a same vessel or with a different one. This can
achieved due to the fact that the nodes visited by a PSV are actually orders, instead
of platforms
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At last, the formulation allows to generate routing solutions in which a PSV can
be scheduled for two or more trips ahead. Solutions like that are particularly useful
when there is not enough transportation capacity to cope with the cargo demand
placed by the platforms of cluster in a single trip. Before presenting the MILP
formulation, additional notation is introduced for convenience.

5.1.1 Specific notation

This section presents the notation necessary specifically for the d -PSVRSP. Let a
set of supply base copies for vessel k ∈ V be N k

0 :=
{
hk + 1, hk + 2, ..., hk+1

}
, in

which hk := n +
∑k−1

k′=1

(
Lk′ + 1

)
, n is the total number of orders, and Lk is the

maximum number of consecutive trips allowed for k.

Sets
C Set of maritime platforms, defined as: C := {1, 2, . . . , b}.
P Set of commodity types.
P− ⊆ P Set of commodity types that are ready to be picked.
P+ ⊆ P Set of commodity types that are ready to be delivered.
O Set of orders requested by maritime platforms, defined as:

O := {1, 2, . . . , n}.
O− Set of pickup orders, defined as: O− := {i ∈ O : pi ∈ P−}.
Wi Set of time windows for order i ∈ O requested by platform ci ∈ C.
V Set of PSVs.
Q Set of compartment types for a vessel.
Pq ⊆ P Set of commodity types compatible with compartment type q ∈ Q.
N k

0 Set of supply base copies for vessel k ∈ V , except the first supply base copy,
defined as: N k

0 := N k
0 \

{
hk + 1

}
N k

0 Set of supply base copies for vessel k ∈ V , except the last supply base copy,
defined as: N k

0 := N k
0 \

{
hk+1

}
.

N k

0 Set of supply base copies for vessel k ∈ V , except the first and last supply
base copies, defined as: N k

0 := N k
0 ∩N k

0.
N k Set formed by the union of the set of orders and set N k

0, defined as:
N k := O ∪N k

0.
N k Set formed by the union of the set of orders and set N k

0, defined as:
N k

:= O ∪N k

0.
Ak Set of arcs for vessel k ∈ V , defined as:

Ak :=
{
(i, j)∈ N k×N k : i ̸= j, i ̸= hk+1, j ̸= hk+1

}
\{

(i, j)∈ N k

0×N k
0 : j ≥ i+2

}
.

A Set of arcs, defined as: A :=
⋃

k∈V Ak.
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Ak
0 Set of supply base arcs for vessel k ∈ V , defined as:

Ak
0 :=

{
(i, j) ∈ N k

0 ×N k
0 : j = i+ 1

}
.

A0 Set of supply base arcs, defined as: A0 :=
⋃

k∈V Ak
0.

Ã Set arcs from pickup to delivery orders requested by the same platform,
defined as: Ã := {(i, j) ∈ O− ×O+ : q ∈ Q, pi, pj ∈ Pq, c

i, cj ∈ C, ci = cj}.
T k Set of tuples for which there will be no commodity flow performed by vessel

k ∈ V , defined as:
T k :=

{
(i, j, p) ∈ N k

0 ×O × P−

}⋃{
(i, j, p) ∈ O ×N k

0 × P+

}
.

T Set of tuples for which there will be no commodity flow performed, defined
as: T :=

⋃
k∈V T k.

Parameters
ϕp Loading/unloading rate of commodity p ∈ P at a platform.
σp Loading/unloading rate of commodity p ∈ P at the supply base.
Bip Pickup quantity of commodity p ∈ P , for order i ∈ O.
Lip Delivery quantity of commodity p ∈ P , for order i ∈ O.
Di Quantity of commodity pi ∈ P for order i ∈ O to be either delivered to or

picked up at platform ci ∈ C.
STi Service time for order i ∈ O.
ETih Earliest time point for time window h ∈ Wi for order i ∈ O.
LTih Latest time point for time window h ∈ Wi for order i ∈ O.
ζi Penalty per hour for violating ETih, i ∈ O, h ∈ Wi.
βi Penalty per hour for violating LTih, i ∈ O, h ∈ Wi, defined as: βi = 2ζi.
DTi Due time for pickup order i ∈ O−, by which the task of unloading this

order onto the onshore base has to be finished.
Qk

q Capacity of compartment type q ∈ Q for vessel k ∈ V .
AT k Moment at which vessel k ∈ V becomes available for loading at the base.
Nk

ij Navigation time for vessel k ∈ V from ci to cj, for ci, cj ∈ C, i, j ∈ O∪{0},
i ̸= j.

SEk Setup time for vessel k ∈ V before it departures from a platform.
SP k Safe positioning time for vessel k ∈ V when arriving at a platform.
T k
ij Total travel time for vessel k ∈ V from ci to cj, ci, cj ∈ C, i, j ∈ O∪{0}, i ̸=

j, defined in 3.2.
Lk Maximum number of consecutive trips allowed for vessel k ∈ V .
TDk Maximum trip duration for vessel k ∈ V .
θk Fuel cost per hour for k ∈ V awaiting at the base’s vicinity.
φk Fuel cost per hour for k ∈ V operating at the supply base.
γk Fuel cost per hour for k ∈ V in navigation.
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δk Fuel cost per hour for k ∈ V enrolled in service-related tasks offshore, such
as cargo handling, waiting times, or setups.

ξk Non-dimensional, positive factor devised for each k ∈ V to promote the use
of smaller vessels.

α Weight parameter, defined as: α ∈ [0, 1].

5.1.2 Modeling

This section presents an MILP formulation for the d -PSVRSP. The constraints
and objective function of such a formulation are introduced in “blocks". The first
block presents the degree constraints, which produce the route’s structure. The
second block accounts for the commodity flow constraints. The third block defines
constraints that express time moments. The fourth block introduces constraints
that impose a maximum route duration. The fifth block of constraints serves
the purpose of avoiding service times to overlap for each platform’s orders. The
sixth block of constraints accounts for the time windows to be used. The seventh
block of constraints defines the due time (deadline) for each pickup order. The
last two blocks of constraints express important routes’ time components, such as
travelling, service, berth times, cumulative full consumption, and utilization time.
The model’s objective function is presented in the last block.

Nodes’ degree constraints. Let a binary variable xk
ij be 1 if and only if vessel

k ∈ V traverses arc (i, j) ∈ Ak. Constraints (5.1) and (5.2) enforce that every used
vessel must start a trip from the supply base and return back to it after finishing its
offshore agenda. For convenience, a vessel k ∈ V is enforced to perform a fictitious
trip from supply base node i ∈ N k

0 to node i + 1 ∈ N k
0 even if this vessel is not

used for its l-th trip. Constraints (5.3) simply state the degree relationship at each
order node, while constraints (5.4) ensure that every order will be served exactly
once. Constraints (5.5) enforce that each vessel must use its supply base nodes
sequentially. ∑

(i,j)∈Ak

xk
ij = 1 ∀k ∈ V ,∀i ∈ N k

0 (5.1)

∑
(j,i)∈Ak

xk
ji = 1 ∀k ∈ V ,∀i ∈ N k

0 (5.2)

∑
(j,i)∈Ak

xk
ji =

∑
(i,j)∈Ak

xk
ij ∀k ∈ V ,∀i ∈ O (5.3)

∑
k∈V

∑
(i,j)∈Ak

xk
ij = 1 ∀i ∈ O (5.4)
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∑
(i,j)∈Ak

xk
ij ⩽

∑
(j,i)∈Ak

xk
ji ∀k ∈ V ,∀i ∈ N k

0 (5.5)

Commodity flow constraints. Let a non-negative variable zijp represent the
amount of commodity p ∈ P flowing over arc (i, j) ∈ A. Constraints (5.6) ensure
that compartment capacity constraints are respected, while constraints (5.7) enforce
the demand balance at each order node. The notation 1p=pi is a indicator function,
resulting 1, if p = pi, or 0, otherwise. For convenience, if i ∈ O−, i.e., i is a pickup
order, let Di take a negative value. Constraints (5.8) enforce that there are no
pickups leaving the supply base, nor deliveries returning to it, respectively.∑

p∈Pq

zijp ⩽
∑
k∈V

Qk
qx

k
ij ∀(i, j) ∈ A \ A0,∀q ∈ Q (5.6)

∑
(j,i)∈A

zjip −
∑

(i,j)∈A

zijp = 1p=piDi

∑
k∈V

∑
(i,j)∈Ak

xk
ij ∀i ∈ O,∀p ∈ P (5.7)

zijp = 0 ∀(i, j, p) ∈ T (5.8)

Time constraints. Let ski be a non-negative variable that represents the start time
of the cargo loading operation for vessel k ∈ V at its supply base node i ∈ N k

0. Let
ai and dj be non-negative variables that denote the arrival time at node i ∈ N k

and departure time from node j ∈ N k, respectively. Let ãij be a non-negative
variable that represents the arrival time at node j from node i if arc (i, j) ∈ A is
traversed by some vessel and 0, otherwise. A non-negative variable fk

i is defined to
represent the moment at which vessel k ∈ V finishes its unloading operation at its
supply base node i ∈ N k

0. Constraints (5.9) state that vessel k is available from the
moment AT k. Constraints (5.10) define the vessel departure time from the supply
base. Together, constraints (5.11) – (5.13) define the arrival time for a vessel at an
order node or at a supply base node. The big-M value Mij is properly defined in
the Appendix. Constraints (5.14) assure that the order service time is respected.
Constraints (5.15) enforce that every vessel must return to the supply base and
unload onto it pickups collected during the trip. Constraints (5.16) assure that a
vessel can not start its next trip before the previous one is finished. The subtour
elimination is jointly assured from constraints 5.10 – 5.15, as they impose that a
vessel used must start and finish its route at the supply base.

shk+1 ⩾ AT k ∀k ∈ V (5.9)

si +
∑
p∈P+

∑
(i,j)∈Ak\Ak

0

σpzijp = di ∀k ∈ V ,∀i ∈ N k

0 (5.10)
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0 ≤ ãij ⩽ Mij

∑
k∈V:(i,j)∈Ak

xk
ij ∀(i, j) ∈ A (5.11)

di +
∑
k∈V

∑
(i,j)∈Ak

T k
ijx

k
ij ⩽

∑
(i,j)∈A

ãij ∀i ∈
⋃
k∈V

N k (5.12)

ai =
∑

(j,i)∈A

ãji ∀i ∈
⋃
k∈V

N k (5.13)

ai + STi = di ∀i ∈ O (5.14)

ai +
∑
p∈P−

∑
(j,i)∈Ak\Ak

0

σpzjip = fi ∀k ∈ V ,∀i ∈ N k
0 (5.15)

fi ⩽ si ∀k ∈ V ,∀i ∈ N k

0 (5.16)

Trip duration limit constraints. Constraints (5.17) apply a limitation on the
trip time per vessel.

fi+1 − si ≤ TDk ∀k ∈ V ,∀i ∈ N k

0 (5.17)

Service precedence constraints. Let a binary variable yij be 1 if the service
associated with order i ∈ O finishes before that of order j ∈ O starts, and 0

otherwise. Constraints (5.18) – (5.19) enforce non-overlapping services for orders
that belong to the same platform. Constraints (5.20) assure that pickup orders be
serviced before the delivery ones.

dj ⩽ ai +DTjyij ∀(i, j) ∈ A \ A0,∀c ∈ C : ci = cj (5.18)

di ⩽ aj +DTi (1− yij) ∀(i, j) ∈ A \ A0,∀c ∈ C : ci = cj (5.19)

yij = 1 ∀(i, j) ∈ Ã (5.20)

Time window constraints. Let a binary variable uih be 1 if and only if order
i ∈ O is served within time window h ∈ Wi. Constraints (5.21) compel the model to
select only one time window for each order. Constraints (5.22) – (5.23) assure that
the offshore service time of an order must happen within the time window selected
for that order. ∑

h∈Wi

uih = 1 ∀i ∈ O (5.21)

ai ⩾
∑
h∈Wi

ETihuih ∀i ∈ O (5.22)
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di ⩽
∑
h∈Wi

LTihuih ∀i ∈ O (5.23)

Due time constraints. Let binary variables ȳki be 1 if and only if vessel k ∈ V
transports order i ∈ O− and ỹkij be 1 if and only if vessel k ∈ V transports order i ∈
O− to supply base node j ∈ N k

0. Constraints (5.24) inform what vessel transports
what pickup order. Constraints (5.25) enforce that a vessel in use to transport a
pickup order must do it in one of its trips. Constraints (5.26) – (5.29) account
for the selection of a trip for a vessel to transport pickup orders back to the base.
Constraints (5.30) impose the due time for a pickup order carried by certain vessel.
The big-M values M2,i, Mk

3 , M4,i, and Mk
5 are properly defined in the Appendix.

ȳki =
∑

(i,j)∈Ak\A0

xk
ij ∀k ∈ V ,∀i ∈ O− (5.24)

∑
j∈N k

0

ỹkij = ȳki ∀k ∈ V ,∀i ∈ O− (5.25)

ai − ahk+2 ⩽ M2,i

(
1− ỹki,hk+2

)
∀k ∈ V ,∀i ∈ O− (5.26)

dj − ai ⩽ Mk
3

(
1− ỹkij

)
∀k ∈ V ,∀i ∈ O−,∀j ∈ N k

0 (5.27)

di − aj+1 ⩽ M4,i

(
1− ỹkij

)
∀k ∈ V ,∀i ∈ O−,∀j ∈ N k

0 (5.28)

dhk+1−1 − ai ⩽ Mk
3

(
1− ỹki,hk+1

)
∀k ∈ V ,∀i ∈ O− (5.29)

fk
j ⩽ DTi +Mk

5

(
1− ỹkij

)
∀k ∈ V ,∀i ∈ O−,∀j ∈ N k

0 (5.30)

Activity type constraints. Let the following non-negative variables be for vessel
k ∈ V : qk, gk, tk, and vk which represent the total supply base service time, total
offshore time, total navigation time, and total service time, respectively. Cons-
traints (5.31) express the total supply base service time per vessel, which includes
loading delivery orders before trip’s departure and unloading onto the base pic-
kups the collected offshore. Constraints (5.32) capture the total time a vessel stays
offshore. Constraints (5.33) address the total navigation time for each vessel. Cons-
traints (5.34) express the total time a vessel is enrolled in service related procedures.

qk =
hk+1−1∑
i=hk+1

(
di − ski

)
+

hk+1∑
i=hk+2

(
fk
i − ai

)
∀k ∈ V (5.31)

gk =
hk+1−1∑
i=hk+1

(ai+1 − di) ∀k ∈ V (5.32)

tk =
∑

(i,j)∈Ak

Nk
ijx

k
ij ∀k ∈ V (5.33)
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vk = gk − tk ∀k ∈ V (5.34)

Fuel consumption and vessel utilization constraints. Let the non-negative
variables f1 and f2 be the marginal cumulative vessels’ fuel cost and the cumulative
vessels’ utilization time, respectively. Equations (5.35) specify f1. Equations (5.36)
specify f2.

f1 =
∑
k∈V

(
φk − θk

)
qk +

(
γk − θk

)
tk +

(
δk − θk

)
vk (5.35)

f2 =
∑
k∈V

ξk
(
fk
hk+1 − AT k

)
(5.36)

Objective function. The problem’s minimization objective is presented in (5.37),
which is a composite function formulated from a weighed sum of f1 and f2 for
α ∈ [0, 1]. The parameter η, defined in the Appendix, specifically in 7.2, monetizes
f2 so that both f1 and f2 keep commensurable.

Min
f1,f2

αf1 + (1− α) ηf2 (5.37)

The goal of the d -PSVRSP is to perform the minimization expressed in (5.37),
including decision variables subject to constraints (5.1) – (5.36).

5.1.3 Strengthening inequalities

The essence of the algorithm used to separate1 strengthening inequalities for the
d -PSVRSP is reproduced here, aiming to better clarify the reader on it. The
strengthening inequalities are an adaptation of the classic rounded capacity ine-
qualities (RCIs) LAPORTE and NOBERT (1983). Specifically, RCIs are defined as
follows:

∑
k∈V

∑
i/∈S

∑
j∈S

⌈
Qk

q

Qq

⌉
xk
ij ⩾

⌈∑
i∈S

∑
p∈Pq

1p=piDi

Qq

⌉
∀S ⊆ O,∀q ∈ Q, (5.38)

1The development of the separation algorithm for strengthening inequalities for the d -PSVRSP
is not one of the dissertation’s contributions. The algorithm was developed by researchers of the
Center for Advanced Process Decision-making (CAPD), at Carnegie Mellon University (CMU),
PA, EUA. The algorithm is just utilized in this dissertation, as fruit of a joint research period
between CMU and Petrobras, in which this dissertation’s author developed the MILP model for
the d -PSVRSP.

42



where Qq := max
k∈V

Qk
q . RCIs of this form can be considered as rounding inequalities

with Qq being the division term before the rounding procedure, thus they are valid
inequalities.

In order to separate RCIs, it is first constructed the support graph G that cor-
responds to the LP fractional solution x at a given branch-and-bound node. The set
of supply base copies, ∪k∈VN k

0 , is then shrunk to be a single vertex in the graph and

then assign
∑

k∈V

⌈
Qk

q

Qq

⌉
xk
ij

(∑
p∈Pq

1p=piDi/Qq

)
as the weight for arc (i, j) (node i).

Three heuristics are adopted to separate RCIs.
Specifically, as LYSGAARD et al. (2004) suggested, firstly it is identified all

connected components in the graph G as candidates. The second heuristics separates
the so-called fractional capacity inequalities via the max-flow algorithm. If both
heuristics fail, then it is used the tabu search method proposed by AUGERAT et al.
(1998) to identify violated RCIs. Readers are referred to AUGERAT et al. (1998)
and WANG et al. (2021) for implementation details.

5.2 Computational studies

In this section, the instances’ generation process is described, as well as the compu-
tational results obtained from the approach proposed to solve the d -PSVRSP. Im-
plementations are made in C++ and all subordinate linear and mixed-integer linear
programs were solved using the CPLEX Optimizer 12.9.02 through the C application
programming interface, with all settings being default, except the relative optimality
gap tolerance and run-time limit, set as: MIPGap = 0.1% and TimeLimit = 1800

seconds. The gap value reported by the solver is defined as: gap = UB−LB
UB

× 100, in
which UB stands for “upper bound"and LB stands for “lower bound".

All computations were performed on an Intel Xeon CPU E5-2689 v4 server run-
ning at 3.10 GHz. A total of 128GB of available RAM was shared among 19 copies
of the model running in parallel on the server. Each instance was solved by one
copy of the model using a single thread. All CPU times and relative optimality gap
values presented as results in this section are calculated as arithmetic means.

5.2.1 Benchmark instances

The platform locations are illustrated in the Figure 5.1. It is considered a group of
13 platforms, the solid dots in that figure, to be used in the design of benchmark
instances. Some descriptive statistics about this group are: the closest platform

2The CPLEX solver was a natural choice because the routines to integrate the RCI cuts into
the solver’s solution process were already implemented for CPLEX by the CMU’s research group,
as explained in section 5.1.3.
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from the supply base is located at 132 km and the farthest at 191 km. Among the
platforms, the minimum distance is 1.65 km and, the maximum, 61 km.

Figura 5.1: Platform and supply base locations.

The instances are restricted to orders of deck cargo, diesel, and water, which
are devised per platform from operator’s historical data. For convenience, pickup
and delivery orders of deck cargo are regarded as distinct commodities, whereas
diesel and water appear only as deliveries, such as typically seen in practice. Three
PSV sizes are used in the instances: small (S), medium (M), and large (L). Vessel
navigation times are calculated using geodesic distances among the platforms and
historical velocities developed in real operations.

The test set for the d -PSVRSP contains 3600 feasible instances designed as
follows. There are 60 basic instances whose platforms were randomly selected among
the solid dots in Figure 5.1. This selection is made in such a manner that all
platforms appear at least once in the basic group. Half of this group is made of
instances with 6 platforms each and the remainder half with 7.

Each of the so generated 30-size group contains 6 subgroups of 5 instances each.
The first subgroup is formed only with 10-order size instances; the second subgroup,
only 12-order size instances; the third, 14-order; and so on up to 20 orders. From
the configuration stated, it is possible to arbitrarily classify the basic instance set
into sizes referenced by the number of orders: small, 10 – 12 orders; medium, 14 –
16 orders; and large size, 18 – 20.

The basic 60 instances are then branched into 12 versions by varying the number
of PSVs according to fleet profiles containing small, medium, and large vessels.
Such fleet profiles are organized as follows: 5 versions with 2 vessels each, given
by SS, SM, MM, ML, LL; 5 versions with 3 vessels each, represented by SSM, SMM, SML,
MML, MLL; and 2 versions with 4 vessels each, defined by SSML and SMML. Since the
problem’s objective is a composite function weighted by α, the final number of
instances depends on how many α-values are utilized. In this study, each of the
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60 × 12 = 720 instances are solved for all α ∈ {0, 0.25, 0.5, 0.75, 1}, so that the
influence of α in the solutions can be perceived. Therefore, the complete test set
contains 60× 12× 5 = 3600 instances.

The naming for each instance involves the number of orders, PSVs, platforms,
a realization identifier, and a suffix to let one know in advance about the fleet
profile in use. As an example, the name 16n-2k-6c-3r_ML corresponds to an ins-
tance with 16 orders (n), 2 PSVs (k), 6 platforms (c), realization number 3 (r),
and fleet profile ML, which corresponds to a small PSV and another large one, gi-
ven the existence of 2 vessels in that instance. The realization number serves to
differentiate instances with respect to the platforms selected and types of orders,
hence, a name like 16n-2k-6c-5r_ML means a distinct instance realization. The
Table 5.2 reproduces how the 3600 are designed in terms of number of platforms,
orders, and vessels’ fleet. Interested readers may download the applicable data from
http://gounaris.cheme.cmu.edu/datasets/psvrp/.

Tabela 5.2: Instances’ design. ‡Multiplier; †Number of basic instances; ∗Number of
PSV fleet versions.

(a) Total number of instances given α values.

m‡ 3600
5× 720α=0 . . . 720α=1

12∗× 60† . . . 60† . . . 60† . . . 60†

(b) Basic instances’ structure.

m‡ 60†

2× 306c 307c
6× 510n . . . 520n 510n . . . 520n

(c) Branching basic instances to assign fleets (PSV sizes).

12∗×
5 5 2

SS . . . LL SSM . . . MLL SSML SMML

5.2.2 Performance

This section demonstrates the overall performance of the method developed to
solve the d -PSVRSP. However, it is first convenient to depict a few representa-
tive solutions. Figure 5.2 presents the optimal routing and scheduling for instance
20n-4k-7c-66r_SSML. In Figure 5.2a, it can be seen that only two small PSVs are
utilized to fulfill orders placed by all 7 platforms. In Figure 5.2b, the time schedule
of those PSVs is presented, depicting the route start and finish times as well as
arrival and departure times for each platform in the route. The scheduling plot is
relevant for providing perspective of how much time each vessel typically spends at
each platform or at the supply base.

Beyond the traditional routing scheme visualized in Figure 5.2, other solution
shapes can also be generated. For example, Figure 5.3a demonstrates an optimal
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(a) Routing. (b) Scheduling.

Figura 5.2: Solution shape for instance 20n-4k-7c-66r_SSML.

routing in which a single small PSV perfoms 2 trips to fully meet the demand of
7 platforms. From the scheduling related to that solution, it is possible to observe
that the supply base service occurrences for that vessel, specially the intermediary
service between 60 and 80 h, preceding the departure time of the second trip.

(a) Routing. (b) Scheduling.

Figura 5.3: Solution shape for instance 16n-2k-7c-8r_SM.

Another example appears in Figure 5.4a. The multi-trip optimal solution again
utilizes only one small PSV, yet now the platform with ID 1 has its demand met in
2 trips. The associated scheduling demonstrated in Figure 5.4b reveals the existence
of two service occurrences for the platform 1.

It is important to note that the MILP model to solve instances of the d -PSVRSP
routes orders, instead of routing platforms, such as traditionally seen in the litera-
ture. Hence, in the present problem, the platforms are implicitly routed too, as
orders share the same coordinates than their platforms, naturally providing the op-
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(a) Routing. (b) Scheduling.

Figura 5.4: Solution shape for instance 14n-2k-6c-22r_SM.

portunity to have a platform visited more then once in the optimal solution, case
this platform has placed more than one order.

With a few example solutions discussed, now the results obtained from the
method developed to solve 3600 instances utilizing RCI cuts appear in Table 5.3,
which organizes such results by pivoting the instances per number of orders. The
instances resulted in MILP models ranging from 666 non-negative real variables, 257
binary variables, and 697 constraints – case of instances with 10 orders and 2 PSVs
– to 2691 non-negative real variables, 1843 binary variables, and 2705 constraints
– case of instances with 10 orders and 25 scenarios. In Table 5.3, #ord and #ins
stand for number of orders and instances, respectively, whereas #opt, #tlf, and
#tln stand for number of instances deemed optimal, time limit feasible, and time
limit with no incumbent found, respectively.

Tabela 5.3: Results grouped by number of orders.

#ord #ins #opt time (s) #tlf gap (%) #tln
10 600 565 13.5 35 17.8 –
12 600 554 32.7 46 7.0 –
14 600 535 140.4 65 10.5 –
16 600 407 186.4 193 11.7 –
18 600 359 323.5 236 6.9 5
20 600 143 468.1 448 10.7 9

Total 3600 2563 140.5 1023 10.1 14

From 10 to 14 orders per instance, the results reveal a good and consistent
performance for the proposed method, since it finds optimal solutions for the vast
majority of the instances, taking less than 2.5 minutes for that, on average. From
16 to 18 orders, the performance is still relevant, considering that optimal solutions
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were found for 68% of the instances with 16 orders within roughly 3 minutes and
60% of those with 18 orders within 5.5 minutes. At 20-order size instances, the
method’s performance suffers a notable degradation fruit of its poor tractability for
larger instances, resulting in only 24% of the them solved to optimality, demanding
approximately 8 minutes.

In summary, despite the tractability decreases for 16 orders or more, 71.2% of
all instances demonstrate that the method succeeds in finding optimal solutions
on average in less than 3 minutes. No optimal solution is found in 28.4% of the
instances, which resulted in a low quality demonstrated by the average gap value of
10.1%. From the entire test set, in only 14 instances (less than 0.4%) no incumbent
is found.

Table 5.4 presents the results grouped in terms of fleet profile. Among the ins-
tances with 2 vessels, the method solves 82% of them in approximately 100 seconds,
on average. With 3 vessels, the performance decreases considerably to 67% of the
instances solved to optimality, and the associated time increases 60%. With 4 PSVs,
55% of the instances are solved, consuming 3.5 minutes, on average. This table the-
refore reveals that the problem’s tractability is largely worsened as the number of
PSVs in the fleet profile increases.

Tabela 5.4: Results grouped by fleet profile.

Fleet profile #ins #opt time (s) #tlf gap (%) #tln
SS 300 277 80.8 23 14.0 –
SM 300 172 148.5 120 11.6 8
MM 300 273 93.6 27 7.3 –
ML 300 241 119.6 58 8.6 1
LL 300 262 89.6 38 5.3 –

2 PSVs 1500 1225 102.7 266 9.8 9
SSM 300 213 240.9 87 5.1 –
SMM 300 163 139.3 134 13.1 3
SML 300 163 193.3 137 14.6 –
MML 300 249 148.3 51 5.5 –
MLL 300 222 100.9 78 7.1 –

3 PSVs 1500 1010 163.2 487 10.3 3
SSML 300 174 237.4 126 5.7 –
SMML 300 154 181.0 144 13.4 2
4 PSVs 600 328 210.9 270 9.8 2
Total 3600 2563 140.5 1023 10.1 14
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5.2.3 Effect of the rounded capacity inequalities (RCIs)

Table 5.5 reveals how impacted the method’s performance is for utilizing RCI cuts
in the solution process. From 10 to 12 orders, i.e., small instances, adding RCIs
does not make any difference regarding the number of optimal solutions. In this
range, the time decreases at most 40% by adding RCIs. Yet, it was already small,
i.e., within 60 seconds when no RCIs are used. Utilizing RCIs starts to demonstrate
modest relevance at 14 orders per instance due to an increase of 7.4% in the number
of optimal solutions, followed by 35% less time consumed. For 16 orders or more, the
gains from utilizing the capacity cuts are clearly distinguishable both in the number
of optimal solutions and run-time, since applying the method results in solving at
least 38% more instances, accompanied with 60% of reduction in computing time,
at least.

Tabela 5.5: Results grouped by number of orders. Effect of the RCI cuts.

#ord #ins Without RCI With RCI
#opt time(s) #tlf gap(%) #tln #opt time(s) #tlf gap(%) #tln

10 600 565 19.0 35 17.7 – 565 13.5 35 17.8 –
12 600 554 55.2 46 6.6 – 554 32.7 46 7.0 –
14 600 498 217.2 102 7.9 – 535 140.4 65 10.5 –
16 600 295 452.6 305 7.8 – 407 186.4 193 11.7 –
18 600 75 773.3 524 7.1 1 359 323.5 236 6.9 5
20 600 2 1336.7 588 13.0 10 143 468.1 448 10.7 9

Total 3600 1989 172.8 1600 9.7 11 2563 140.5 1023 10.1 14

Although the overall performance of the method for instances larger than 14
orders is not as good and consistent as for the case with smaller ones, employing
such a method makes it possible to solve more than 50% of the instances with
16 and 18 orders in a relatively short time interval. For 20-order size cases, the
poor performance is a fact. Yet, solving 143 out of 600, instead of mere 2 in 600,
signalizes the cuts grasp some effectiveness at larger instances, therefore motivating
further improvements on it. Generally, utilizing RCIs increases 28.8% the number
of instances solved, whereas it reduces the run-time in 18.7%. As already seen in
section Performance, greater gap values are achieved even for the time limit feasible
instances, and in few instances no solution is found.

5.2.4 Effect of the composite objective function

This section presents results obtained from experimenting the solution method, in-
cluding RCI cuts, with different values of the weighing parameter α, which appears
in the objective function expressed in (5.37). By doing this, it is possible to perceive
the effect of α over solutions that: (i) seek to minimize purely fuel costs, which is
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achieved by α = 1; (ii) target effective vessel utilization solely, in the case of α = 0;
(iii) try to balance fuel and vessel utilization from α ∈ ]0, 1[.

Considering that PSVs are usually contracted for periods longer than one year,
the cost factor on a daily scheduling basis consists only of a variable parcel given
by the fuel consumption, which is expressed as the marginal fuel expenditure f1

in (5.35). It is also relevant to avoid unplanned idleness and meet the demand
with smaller PSVs whenever possible, what in turn releases more vessel capacity for
upcoming schedules. These two aspects are captured from the variable f2 in (5.36).
Table 5.6 contains a series of results for α ∈ H, in which H := {0, 0.25, 0.5, 0.75, 1}.

Tabela 5.6: Results per alpha value for all fleet profiles and #ord.

α #ins #opt time (s) #tlf gap (%) #tln
0 720 489 141.8 229 9.6 2

0.25 720 500 152.7 217 9.2 3
0.5 720 502 148.4 214 9.9 4
0.75 720 520 148.7 197 10.4 3
1 720 552 112.8 166 11.7 2

Total 3600 2563 140.5 1023 10.1 14

From Table 5.6, it can be noted an increasing trend in the number of optimal
solutions (#opt) as α approaches 1, this in turn means obtaining an optimal plan is
slightly more tractable and faster when only fuel cost is the minimizing driver in the
model’s objective function. Besides, no matter the alpha value set, a relatively small
solution time is observed. In order to better elucidate the impact of selecting α for
the problem studied, Figure 5.5 presents a Pareto-like curve relating scaled, non-
dimensional pairs P (α) = (f sn

1 (α), f sn
2 (α)), for α ∈ H and instance 14n-2k-6c-8r_-

ML. The value on each axis for the coordinates of those pairs are given by:

f sn
1 (α) =

f ∗
1 (α)

minβ∈H {f ∗
1 (β)}

∀α ∈ H (5.39)

f sn
2 (α) =

f ∗
2 (α)

minβ∈H {f ∗
2 (β)}

∀α ∈ H (5.40)

In (5.39) and (5.40), f ∗
1 (α) and f ∗

2 (α) are the optimal values for f1 and f2,
respectively, obtained for instance 14n-2k-6c-8r_ML given α ∈ H. From Figure 5.5,
if one takes α = 1 as an example, the plot demonstrates f sn

2 approaches 1.09, which
in practice means the solution for that instance led to f2 values almost 9% greater
than the minimum obtained. In other words, if what matters is just saving fuel, it
comes as a trade-off with awaiting more to have vessels available for future scheduling
requests.

Now looking at the other extreme of the Pareto plot for that instance, it is
possible to conclude that for objective functions concentrated on effectiveness of
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Figura 5.5: Pareto graph for instance 14n-2k-6c-8r_ML.

PSVs’ utilization, i.e., α ∈ {0, 0.25}, the graph demonstrates f sn
1 approaches 1.015.

This means a slight increase around of 1.5% in the fuel cost f1, in comparison
with the minimum observed. For α = 0.5, there still is no relevant decrease in
f sn
1 . However, if one’s aim is to optimize fuel consumption, while escaping from

unnecessary greater route finishing times, adopting α = 0.75 seems a reasonable
decision.

Table 5.7 presents scheduling details for the instance whose Pareto curve appears
in Figure 5.5. An example on how that table should be read can described as follows.
For α = 0, the medium size PSV’s availability time is AT = 7 h and the time
planned for that vessel to start the cargo loading service at the base “b"is s = 7

h. After finishing the onshore service, it departures from that base and navigates
to the platform number 1 to provide the service related to order 0, owned by that
platform. This is represented by (0)1.

Tabela 5.7: Routing and scheduling details for the instance 14n-2k-6c-8r_ML.

Instance data Scheduling results
α PSV AT s f f − s Route

0 M 7.0 7.0 100.6 93.6 b, (0)1, (7, 8)5, (4)3, (1, 3, 2)2, (5, 6)4, (12, 13, 10, 11)6, b
L 0.8 0.8 32.5 31.7 b, (9)5, b

0.25 M 7.0 7.0 100.6 93.6 b, (0)1, (7, 8)5, (4)3, (3, 1, 2)2, (6, 5)4, (12, 10, 11, 13)6, b
L 0.8 0.8 32.5 31.7 b, (9)5, b

0.5 M 7.0 7.3 100.7 93.4 b, (7, 8)5, (4)3, (1, 3, 2)2, (5, 6)4, (12, 10, 11, 13)6, (0)1, b
L 0.8 0.8 32.5 31.7 b, (9)5, b

0.75 M 7.0 12.2 100.7 88.5 b, (0)1, (3, 1, 2)2, (5, 6)4, (12, 10, 13, 11)6, (4)3, b
L 0.8 0.8 35.2 34.4 b, (9, 7, 8)5, b

1 M 7.0 20.1 108.6 88.5 b, (4)3, (6, 5)4, (10, 13, 12, 11)6, (3, 1, 2)2, (0)1, b
L 0.8 0.8 35.2 34.4 b, (9, 7, 8)5, b

Afterwards, the vessel navigates to platform number 5, where it sequentially
attends orders 7 and 8. These activities are represented by (7, 8)5. The last platform
visited in the route for vessel M is 6, where it services orders 12, 13, 10, and 11 exactly
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in that sequence, returns to the base, and finishes the route at f = 100.6 h, yielding
the total routing time f − s = 93.6 h. For α = 0, a similar reading can be made for
the route performed by the large PSV.

Concerning the scheduling results, the Table 5.7 demonstrates that the solutions
for α ∈ {0, 0.25} are rather similar, presenting a few changes in the services’ sequence
for platforms 2, 4, and 6. Those solutions avoid idle times, since the vessels start
their services right at AT , and focus on utilizing smaller PSVs. By doing this, the
M-size PSV ends up transporting 13 out of 14 orders existing in that instance.

When α is set to the central value 0.5, the problem’s objective function equally
balances fuel cost and effective vessel utilization. Nevertheless, the routing times
turn out to be quite similar to those for α < 0.5, even though the M-size vessel’s
idleness increases in 0.3 h (s− AT = 0.3) and the sequence of platforms visited by
the M-size vessel is rearranged so that lower routing costs are achieved.

For α = 0.75, the importance of fuel cost is more relevant in the face of effective
vessel utilization, case in which a non-intuitive, yet cost-advantageous solution is
found by fully servicing the platform 5 using the large vessel, despite the fact that
it consumes more fuel. In this scenario, the M-size PSV has its service start time at
the supply base delayed in 5.2 h – i.e., the vessel is idle from 7 h to 12.2 h – since
its route is now shorter. This is a better decision, since the fuel consumption for a
vessel awaiting at the base vicinity is likely to be less than that in the offshore area,
case in which the PSV must usually hold position.

If saving fuel is the only aspect that matters, what is achieved by α = 1, there
may be longer idle times for vessels at the base vicinity, what is observed for the
M-size PSV, as it turns available for use at 7 h, however it begins to operate at the
base only at 20.1 h, after being 13.1 h in idle state. For this scenario, the final route
time f = 108.6 h ends up to be 8 h longer than those seen for α < 1, what may
impact forthcoming scheduling opportunities at the cost of saving bare 2% in fuel.

Although for some instances the trade-off regarding fuel cost and vessel utiliza-
tion is more evident, such as that in Figure 5.5, a similar output does not hold for
the average case demonstrated in Figure 5.6. This plot presents another Pareto-like
curve also relating scaled, non-dimensional pairs P (α) =

(
f
sn

1 (α), f
sn

2 (α)
)
, for all

α ∈ H, yet now as an average view. The value on each axis for the coordinates of
those pairs are given by:

f
sn

1 (α) =

∑
i∈Iα

(
f∗
1 (i,α)

minβ∈H{f∗
1 (i,β)}

)
|Iα|

∀α ∈ H (5.41)

f
sn

2 (α) =

∑
i∈Iα

(
f∗
2 (i,α)

minβ∈H{f∗
2 (i,β)}

)
|Iα|

∀α ∈ H (5.42)
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In (5.41) and (5.42), Iα is the set of instances solved to optimality for some
α ∈ H, and f ∗

1 (i, α) and f ∗
2 (i, α) are the optimal values for f1 and f2, respectively,

given certain instance i ∈ Iα and α ∈ H. Figure 5.6 reveals that the relative
variability in fuel cost expressed as f

sn

1 in that figure is negligible for all α ∈ H.

Figura 5.6: Consolidated Pareto plot.

However, for the instances studied, it can be concluded that optimizing fuel
solely leads on average to utilizing vessels for longer periods, i.e., given the increase
greater than 20% presented in f

sn

2 . A reasonable choice to cope with both fuel cost
and vessel utilization would be α = 0.75.

5.3 Discussion on the practical application

E&P operators and logistic services providers are frequently challenged by the task
of designing good plans for the logistic system in a fast and reliable manner. Ty-
pically, such plans are created in spreadsheets using in-company, developer-specific
heuristics. Despite that being ubiquitously applied, it is not uncommon for such
methods to ignore important operational factors, as CIGOLINI et al. (2014) points
out.

For this reason, designing an exact mathematical representation in the form of
an MILP model is relevant to enable a structured, flexible, and easily modifiable
approach to solve the d -PSVRSP. It provides generality in terms of daily usage for
maritime routing and scheduling of supply vessels, while encompassing the desi-
red operational aspects. Another frequently seen premise when designing efficient
routing and scheduling plans is to assume that the transport activities have an un-
derlying structure allowing one to regard them as a fixed, periodic tasks. There are
some arguable reasons for moving forward with such a strategy.

Firstly, as general cargo is uninterruptedly demanded, it creates a perception
that fixing a periodic scheme for pickup/delivery should properly suit the offshore
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demand as a whole. However, the cargoes are diverse in type, amount requested,
and can be very installation- and/or operation-specific. For instance, rigs use to
demand dry bulks and large quantities of tubular items, which are not part of a
production unit’s demand profile.

Secondly, it is claimed that, as production units have a long lifetime (e.g., 25–30
years) at a fixed location, there would be no decisive argument to modify the periodic
routing at a higher frequency. Conversely, drilling rigs change their locations more
frequently, e.g., a few weeks, hence requesting orders from different offshore locations
oftentimes. Even though, given an oil company usually operates more production
units than rigs, the culture of fixing the logistic plan for longer time intervals succeed.

Thirdly, logistics planners argue that there is a generalized perception of a
“rhythm or cadence"in the transport activities when medium (a couple of weeks) to
long (a few months) term plans are prioritized. As a consequence, this atmosphere
creates an operational “comfort zone"that leverages the maintenance of fixed, peri-
odic logistic plans for the longest time possible.

Regardless the overall result that this approach produces, installations and lo-
gistics personnel look at it positively, as it contributes to the sense of a controllable,
predictable service performance over time. This course of action has motivated
several publications on operational planning of PSVs to develop their models as
periodic vehicle routing problems (PVRPs). A few examples of papers that regard
the problem in this manner are FAGERHOLT (2000), HALVORSEN-WEARE and
FAGERHOLT (2011), HALVORSEN-WEARE et al. (2012b), KISIALIOU et al.
(2018b), and CRUZ et al. (2019).

Given the existence of steady and fluctuating demands, different types of plat-
forms, heterogeneous PSVs, specific time constraints (e.g., time windows, deadlines),
and the expectation for adherence to what is planned, the ability to generate good
quality routing and scheduling plans in a relatively short time is critical, since in the
operational level there will usually be few hours to make and/or correct transport
plans. In this sense, the results presented indicate that the method to solve the d -
PSVRSP can be used in practice for groups that demand up 14 orders, since beyond
that, i.e., 16- to 20-order size problems, the method’s performance decreases.

At last, the possibility to schedule more than one trip per vessel is an interesting
feature for use mainly when one faces restricted transportation capacity at the tar-
get planning horizon. This situation is not rare in practice, since adverse offshore
environmental conditions prolong the trip time significantly, reducing the number of
vessels available for use at the supply base’s vicinity area. Finally, the MILP model
is general enough to decide for specialization, e.g., a route that delivers only diesel, or
to find solutions in which a PSV carries multiple commodity types, simultaneously.
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Capítulo 6

Routing and scheduling of platform
supply vessels under uncertainty

The previous chapter assessed the benefits for practical use of a mathematical pro-
gramming model for routing and scheduling of PSVs relying on average-valued pa-
rameters. This approach is important for constituting an ideal referential for an
offshore service plan and cost estimates assumed free of external, uncontrollable
uncertainties, such as adverse environmental conditions. Matter of fact, in many si-
tuations the routes one plans do not suffer any damage from exogenous uncertainty
simply because favorable offshore scenarios unfold, in which for instance only minor
or no delays at all occur.

However, it is desirable that routing plans be able to cope with uncertainty,
whenever it realizes. In order to consider it in an optimization schema, it may
seem reasonable to solve an optimization model separately for the realizations of
the random parameters, obtain optimal pairs of objective function and solution,
and somehow combine them all as single objective and solution values, hoping that
this approach provides some protection against uncertainty. The drawback of doing
this is the numerous optimization problems that must be solved, as the number
of scenarios increase extremely fast with the problem size. Another issue is the
“somehow", as it may not be simple to combine all solutions suitably.

Other natural temptation is to conduct sensitivity analysis with the problem
random parameters – honestly understood as random, yet maybe modeled as single-
averaged values to ease the solution process – aiming to “tune"the optimization
model to better face uncertainty. HIGLE (2005) discourages this idea, arguing that
in many cases sensitivity analysis leads to a false sense of security against uncer-
tainty, and, if uncertainty data is available for random parameters, the optimization
model should embrace it.

Usually, stochastic optimization models consider decision stages, since the reali-
zation of uncertainty data can occur in distinct time moments. The general formu-
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lation of a linear two-stage SPR, one of the most seen types of stochastic programs,
is given by:

z = Min
x

c⊤x+ Eξ [Q(x, ξ(ω))]

s.t. Ax = b

x ⩾ 0,

(6.1)

where

Q(x, ξ(ω)) = Min
y

q(ω)⊤y(ω)

s.t. W (ω)y(ω) = h(ω)− T (ω)x

y(ω) ⩾ 0.

(6.2)

In 6.1, c denotes the first-stage cost vector; x denotes the first-stage decision
vector; ξ is a random variable representing uncertainty; ω is an outcome of ξ usually
called scenario, belonging to the set of all scenarios, denoted by Ω; E denotes expec-
tation; Ax = b defines the first-stage constraints. In 6.2, y denotes the second-stage
decision vector; ξ(ω) = (q(ω), h(ω), T (ω)) are second-stage parameters dependent
on the scenario ω; and W (ω)y(ω) = h(ω) − T (ω) defines the second-stage cons-
traints. The term Q(x, ξ(ω)) corresponds to the optimal value of the second-stage
recourse problem given x and a realization ξ(ω), ω ∈ Ω.

It is usual to define the expected second-stage value function as:

L(x) = Eξ [Q(x, ξ(ω))] , (6.3)

which allows one to represent 6.1 in its full form, usually referred to as deterministic
equivalent problem (DEP), defined as follows (BIRGE and LOUVEAUX, 2011).

zDEP = Min
x

c⊤x+ L(x)

s.t. Ax = b

x ⩾ 0.

(6.4)

The term L(x) is the main difference for a simple deterministic formulation. The
domain of x in 6.4 or y in 6.2 can be suitably adjusted so that the problem could
be turned into a discrete one, for instance. When L(x) is tractable (“computable"),
it can be accordingly replaced by relations that can be formulated as a DEP, which
in turn can solved with traditional methods for MILP models.

Given this context, this chapter introduces a mathematical formulation of an
MILP model in the form of a DEP to solve the s-PSVRSP. Besides, it also presents a
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series of experimental results obtained from solving artificial instances inspired from
real life data of an oil and gas operator that develops its offshore logistics activities
in southeast Brazilian waters, and a discussion on the practical application of the
method proposed.

6.1 Mathematical modeling

This section presents an MILP formulation for the s-PSVRSP. Before introducing
such a formulation, it is worth to mention a few aspects of the modeling approach,
in order to facilitate the understanding the MILP model by the reader. Firstly, the
formulation does not regard the problem as a periodic one in the sense of fixing
a priori the number of visits that a platform can have within a pre-specified time
horizon or even within a trip. The periodic aspect in the present problem relies only
on the fact that each cluster’s platforms place cargo delivery and pickup orders daily,
which in turn are attended from a fixed, regular, and previously defined scheme of
PSV daily departures from the supply base.

Secondly, the formulation proposed actually routes PSVs to “visit"cargo orders,
which means that when a vessel arrives at a platform, it does not necessarily have to
fulfill all orders requested by such a platform at a single visit. As a platform and the
orders placed by it share the same location coordinates, the sequence of platforms
visited implicitly results from the routing solutions found with the MILP model for
the s-PSVRSP. Figure 1.2b illustrates a few routing examples that consider orders
as visit nodes, instead of platforms themselves. At last, the formulation also allows
multiple visits at a platform per trip, with a same vessel or with a different one.
This can achieved due to the fact that the nodes visited by a PSV are actually
orders. Before presenting the MILP formulation, additional notation is introduced
for convenience.

6.1.1 Specific notation

This section presents the notation necessary specifically for the s-PSVRSP.

Sets
C Set of maritime platforms, defined as: C := {1, 2, . . . , b}.
P Set of commodity types.
O Set of orders requested by maritime platforms, defined as:

O := {1, 2, . . . , n}.
Wi Set of time windows for order i ∈ O requested by platform ci ∈ C.
V Set of PSVs.
Q Set of compartment types for a vessel.
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Pq ⊆ P Set of commodity types compatible with compartment type q ∈ Q.
Ω Set of scenarios.
N Set of nodes, defined as N := O∪{0, n+1}, in which define 0 and n+1 are

initial and final supply base copies, respectively, for modeling purposes.
A Set of arcs, defined as: A := {(i, j) : (i, j) ∈ N ×N , i ̸= j, i ̸= n+ 1, j ̸= 0}.
N− Set of nodes, except node n+ 1, defined as: N− := N \ {n+ 1}.
N+ Set of nodes, except node 0, defined as: N+ := N \ {0}.
Ao Set of arcs for order pairs, defined as: Ao := {(i, j) : (i, j) ∈ O ×O, i ̸= j}.
Â Set of arcs for pairs of orders to prevent overlapping services, defined as:

Â := {(i, j) : (i, j) ∈ Ao, i < j, ci ≡ cj, ci, cj ∈ C}.
A− Set of arcs from supply base node 0 to an order, defined as:

A− := {(i, j) : i ≡ 0, j ∈ O}.
A+ Set of arcs from an order to supply base node n+ 1, defined as:

A+ := {(i, j) : i ∈ O, j ≡ n+ 1}.
A≡ Set of arcs between orders that belong to the same platform, defined as:

A≡ := {(i, j) : (i, j) ∈ Ao, c
i ≡ cj, ci, cj ∈ C}.

A̸= Set of arcs between orders that belong to different platforms, defined as:
A̸= := {(i, j) : (i, j) ∈ Ao, c

i ̸= cj, ci, cj ∈ C}.
A Set of arcs, except those for order pairs of different platforms, the defined

as: A := A \ A ̸=.
A Set of arcs, except those for order pairs of the same platform, defined as:

A := A \ A≡.

Parameters
ϕp Loading/unloading rate of commodity p ∈ P at a platform.
σp Loading/unloading rate of commodity p ∈ P at the supply base.
Bip Pickup quantity of commodity p ∈ P , for order i ∈ O.
Lip Delivery quantity of commodity p ∈ P , for order i ∈ O.
ETih Earliest time point for time window h ∈ Wi for order i ∈ O.
LTih Latest time point for time window h ∈ Wi for order i ∈ O.
ζi Penalty per hour for violating ETih, i ∈ O, h ∈ Wi.
βi Penalty per hour for violating LTih, i ∈ O, h ∈ Wi, defined as: βi = 2ζi.
Qk

q Capacity of compartment type q ∈ Q for vessel k ∈ V .
AT k Moment at which vessel k ∈ V becomes available for loading at the base.
Nk

ij Navigation time for vessel k ∈ V from ci to cj, for ci, cj ∈ C, i, j ∈ O∪{0},
i ̸= j.

SEk Setup time for vessel k ∈ V before it departures from a platform.
SP k Safe positioning time for vessel k ∈ V when arriving at a platform.
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T k
ij Total travel time for vessel k ∈ V from ci to cj, ci, cj ∈ C, i, j ∈ O∪{0}, i ̸=

j, defined in 3.2.
Lk Maximum number of consecutive trips allowed for vessel k ∈ V .
TDk Maximum trip duration for vessel k ∈ V .
φk Fuel cost per hour for k ∈ V operating at the supply base.
γk Fuel cost per hour for k ∈ V in navigation.
δk Fuel cost per hour for k ∈ V enrolled in service-related tasks offshore, such

as cargo handling, waiting times, or setups.
πω Probability of scenario ω ∈ Ω, π ∈ [0, 1].
Siw Delay that a vessel incurs before serving order i ∈ O ∪ {0} at scenario

ω ∈ Ω.

6.1.2 Modeling

The constraints and objective function for the s-PSVRSP are defined as follows.
The constraints and objective function of such a formulation are introduced in
“blocks". The first block presents the degree constraints, which produce the route’s
structure. The second block accounts for the commodity flow constraints. The
third block of constraints accounts for the time windows to be used. The fourth
block of constraints serves the purpose of avoiding service times to overlap for each
platform’s orders. The fifth block defines constraints that express time moments.
The sixth block of constraints defines the first and second stage costs considered in
the problem. At last, the problem’s objective function is presented.

Nodes’ degree constraints. Let a binary variable xk
ij be 1 if and only if vessel

k ∈ V traverses arc (i, j) ∈ A. Constraints (6.5) and (6.6) enforce that every vessel
in use must start its route at the supply base and return back to it after finishing
its offshore schedule. Case a vessel is not used, it fictitiously travels from node 0

directly to n + 1. Constraints (6.7) state each order’s degree must be two, i.e., a
vessel arrives to serve it, and departures afterwards. Constraints (6.8) assure that
every order will be served exactly once.∑

j∈N+

xk
0,j = 1 ∀k ∈ V (6.5)∑

i∈N−

xk
i,n+1 = 1 ∀k ∈ V (6.6)∑

i∈N−

xk
io =

∑
j∈N+

xk
oj ∀k ∈ V ,∀o ∈ O (6.7)∑

j∈N+

∑
k∈V

xk
ij = 1 ∀i ∈ O (6.8)
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Commodity flow constraints. Let a non-negative variable zkip be an amount
of the commodity p ∈ P carried by a vessel k ∈ V when it visits node i ∈ N .
Constraints (6.9) capture the quantity of each commodity loaded into a vessel before
it departures from the supply base. Constraints (6.10) assure each vessel’s capacity
is respected. Constraints (6.11) and (6.12), which also avoid formation of sub-tours,
correspond to the linearization of the constraints

xk
ij

(
zkip +Bjp − Ljp − zkjp

)
= 0 ∀k ∈ V ,∀(i, j) ∈ A, ∀p ∈ P ,

which account for the net commodity quantity carried by a vessel at each node
that it visits. In this linearization, M1 is a large enough number that turns cons-
traints (6.11) and (6.12) not binding case xk

ij assumes value 0 for some k ∈ V and
(i, j) ∈ A.∑

i∈O

∑
j∈N+

Lipx
k
ij = zk0,p ∀k ∈ V ,∀p ∈ P (6.9)∑

p∈Pq

zkip ⩽ Qk
q

(
1− xk

0,n+1

)
∀k ∈ V ,∀i ∈ N ,∀q ∈ Q (6.10)

zkjp ⩽ zkip +Bjp − Ljp +M1

(
1− xk

ij

)
∀k ∈ V ,∀(i, j) ∈ A,∀p ∈ P (6.11)

zkjp ⩾ zkip +Bjp − Ljp −M1

(
1− xk

ij

)
∀k ∈ V ,∀(i, j) ∈ A,∀p ∈ P (6.12)

Soft time window constraints. Given a vessel k ∈ V and a scenario ω ∈ Ω, let
a binary variable rki be 1 if and only if k visits order i ∈ O; binary variable uk

ih be
1 if and only if k performs the service related to i within the window h ∈ Wi; non-
negative variables dkiω and akjω, which are the time that k departures from i ∈ N−,
and the time that such a vessel arrives at j ∈ N+, respectively; non-negative variable
ekiω, which is the violation extent that k incurs when it starts the service at i before
ETih; and non-negative variable lkiω, which is the violation extent that k incurs when
it finishes the service at i after LTih. Constraints (6.13) enforce that exactly one
time window must be chosen, whereas they also indicate what vessel fulfills what
order. Together, constraints (6.14) and (6.15) induce services to happen within time
windows, yet allow them to violate such windows.

rki =
∑
h∈Wi

uk
ih ∀k ∈ V ,∀i ∈ O (6.13)

akiω + ekiω ⩾
∑
h∈Wi

ETihu
k
ih ∀ω ∈ Ω,∀k ∈ V ,∀i ∈ O (6.14)

dkiω − lkiω ⩽
∑
h∈Wi

LTihu
k
ih ∀ω ∈ Ω,∀k ∈ V ,∀i ∈ O (6.15)
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Non-overlapping service constraints. Let a binary variable mij be 1 if and only
if the service related to order i finishes before that one associated with order j, given
(i, j) ∈ Â. Case |V| > 1, constraints (6.16) and (6.17) must be included in the model
to avoid service overlap among orders of a same platform. Case |V| = 1, there will
be no overlapping, since the existing PSV will fulfill all orders in the route. Let M2

be a large enough number that turns either (6.16) or (6.17) not binding, depending
on what order, i or j, is visited first.

dkjw ⩽ akiw +M2mij ∀ω ∈ Ω,∀k ∈ V ,∀(i, j) ∈ Â (6.16)

dkiw ⩽ akjw +M2 (1−mij) ∀ω ∈ Ω,∀k ∈ V ,∀(i, j) ∈ Â (6.17)

Time constraints. Given a vessel k ∈ V , a node j ∈ N+, and a scenario ω ∈ Ω, let
a non-negative variable sk0 be the time that k starts to load at the supply base; non-
negative variable tkjω be the waiting time that k spends before starting service at j;
and a non-negative variable fk

n+1,ω be the time that k finishes to unload at the base.
Constraints (6.18) and (6.19) define the supply base loading and unloading times,
respectively. Constraints (6.20) establish each order’s service duration, whereas
constraints (6.21) and (6.22) correspond to the linearization of the constraints

xk
ij

(
dkiω + T k

ij + tkjω + Sjω − akjω
)
= 0 ∀ω ∈ Ω,∀k ∈ V ,∀(i, j) ∈ A,

which account for the time elapsed when a vessel traverses the arc (i, j). The
constant M3 is a large enough number that turns constraints (6.21) and (6.22) not
binding case xk

ij assumes value 0 for some k ∈ V and (i, j) ∈ A.

sk0 +
∑
p∈P

σpz
k
0,p = dk0,ω ∀ω ∈ Ω, ∀k ∈ V (6.18)

akn+1,ω +
∑
p∈P

σpz
k
n+1,p = fk

n+1,ω ∀ω ∈ Ω, ∀k ∈ V (6.19)

akiω +
∑
p∈P

(Lip +Bip)ϕpr
k
i = dkiω ∀ω ∈ Ω,∀k ∈ V ,∀i ∈ O (6.20)

akjω ⩽ dkiω + T k
ij + tkjω + Sjω +M3

(
1− xk

ij

)
∀ω ∈ Ω,∀k ∈ V ,∀(i, j) ∈ A (6.21)

akjω ⩾ dkiω + T k
ij + tkjω + Sjω −M3

(
1− xk

ij

)
∀ω ∈ Ω,∀k ∈ V ,∀(i, j) ∈ A (6.22)

First and second-stage cost constraints. Given a vessel k ∈ V , let the non-
negative variables vk and ykω, ω ∈ Ω, represent the first and second-stage costs,
respectively. Constraints (6.23) correspond to the deterministic fuel costs per vessel
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associated with using it at the supply base, in navigation, and in performing the
offshore orders’ service, setups, and safe positioning occurrences. In these cons-
traints, the cost Ck

ij, (i, j) ∈ A is defined as:

Ck
ij :=



γkNk
ij + δk

[
SP k +

∑
p∈P ϕp (Ljp +Bjp)

]
, if (i, j) ∈ A−

γkNk
ij + δk

[
SEk + SP k +

∑
p∈P ϕp (Ljp +Bjp)

]
, if (i, j) ∈ A̸=

δk
∑

p∈P ϕp (Ljp +Bjp) , if (i, j) ∈ A≡

δkSEk + γkNij if (i, j) ∈ A+

0, if (i, j) ≡ (0, n+ 1)

Constraints (6.24) represent the offshore fuel costs per vessel that arise from the
combination of waiting, realizations of Siω, i ∈ O, ω ∈ Ω, and time window viola-
tions. Parameters ζi and βi, i ∈ O denote penalties for violating a time window.
Variable ykω is regarded as a consolidated recourse action that integrates corrective
decisions associated with waiting and violations. For any random event, i.e., offshore
environmental specific conditions that lead to Siω > 0, the second-stage will observe
at least an inevitable fuel cost given by δkSiωr

k
i if rki = 1, for some k ∈ V , i ∈ O. In

this situation, no recourse action will be capable of mitigating such a cost. It will
be just absorbed as additional fuel cost due to awaiting for favorable operational
conditions.

vk =
∑
p∈P

φkσp

(
zk0,p + zkn+1,p

)
+

∑
(i,j)∈A

Ck
ijx

k
ij ∀k ∈ V (6.23)

ykω =
∑
i∈O

δk
(
tkiω + Siwr

k
i

)
+ ζie

k
iω + βil

k
iω ∀ω ∈ Ω,∀k ∈ V (6.24)

Objective function. The problem’s objective is presented in (6.25). The sum-
mations

∑
k∈V v

k and
∑

ω∈Ω
∑

k∈V πωy
k
ω express operational fleet costs, the former

related to first-stage routing decisions and, the latter, an expected cost associated
with second-stage scheduling decisions regarded as recourse actions, given scenario
probabilities πω, ω ∈ Ω.

Min
v,y

∑
k∈V

vk +
∑
k∈V

∑
ω∈Ω

πωy
k
ω (6.25)

The goal of the s-PSVRSP is to perform the minimization expressed in (6.25) subject
to constraints (6.5) – (6.24).
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6.1.3 Sample average approximation (SAA)

Solving a deterministic equivalent program such as the s-PSVRSP, expressed in 6.5 –
6.25, is particularly difficult for the large number of implicit second-stage optimi-
zation problems Q(x, ξ(ω)) that need to be solved. Another aspect that increases
the problem’s complexity is the number of scenarios |Ω|, which usually escalates
quickly in real applications, leading to a huge number of second-stage constraints
and variables, as they are all ω-indexed.

As an example, suppose a routing problem with 10 service nodes (e.g., orders,
clients), each of these nodes having a random parameter with 20 discrete values to
describe the realization of delays Siω, i ∈ O, ω ∈ Ω. This would result |Ω| = 1020

scenarios, leading to an extremely large model, for sure unsolvable in an acceptable
time, therefore of no value for the practical purpose of finding high quality routing
solutions.

An alternative to mitigate this sort of problem is applying the sample average
approximation (SAA) method, which provides more tractability to stochastic opti-
mization problems, such as the s-PSVRSP, for approximating the implicit calcula-
tion of the expectation Eξ [Q(x, ξ(ω))] existing in the model, by the sample average
function

1

N

N∑
n=1

Q(x, ξ(ωn),

which uses a countable number of scenarios N . By generating N samples
ω1, ω2, . . . , ωN from Ω according to the a sound probability distribution – a dis-
tribution for the random parameter S in the case of the s-PSVRSP – it is possible
to solve a deterministic optimization problem employing the sample average function
and such samples. This deterministic optimization problem for the SAA method can
be expressed as:

zN = Min
x∈X

c⊤x+
1

N

N∑
n=1

Q(x, ξ(ωn)), (6.26)

and corresponds to the original, so-called “true"problem, formulated in terms of an
expectation as second-stage cost, being given by:

z∗ = Min
x∈X

c⊤x+ Eξ [Q(x, ξ(ω))] , (6.27)

where X denotes the first-stage feasible set of decisions given the first-stage cons-
traints. The optimal value zN and its optimal solution x̂ for the SAA problem in 6.26
yield estimates z∗ and x∗ of the true problem in 6.27.
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The general SAA method steps, further detailed in VERWEIJ et al. (2003),
applied to the MILP minimization problem in 6.5 – 6.25 can be described as follows.

1. Lower bound estimation: generate M independent scenario samples of size
N from Ω using a known distribution, then solve M SAA problems based
on 6.26. This results in a series of objective values z1N , z

2
N , . . . , z

M
N , as well as

their associated solution estimates x̂1, x̂2, . . . , x̂M , called solution candidates.
This first phase of the method finishes with the calculation of an average value
of the M SAA problems solved, which is represented by:

z̄N =
1

M

M∑
m=1

zmN . (6.28)

According to VERWEIJ et al., z̄N is actually an estimate for a lower bound
on the optimal value z∗ in 6.27, i.e., E [z̄N ] ⩽ z∗. The standard deviation of
the estimator z̄N can be calculated as: The variance of the estimator z̄N can
be calculated as:

σ̂2
z̄N

=
1

M(M − 1)

M∑
m=1

(zmN − z̄N)
2 . (6.29)

2. Upper bound estimation: given a first-stage feasible decision x̂ ∈ X, such
as any of those candidates, an upper bound for z∗ can be estimated by com-
puting the following quantity:

ẑN ′(x̂) = c⊤x̂+
1

N ′

N ′∑
n=1

Q(x̂, ξ(ωn)), (6.30)

where
{
ω1, ω2, . . . , ωN ′} is a sample of size N ′ that is commonly large, res-

pects N ′ > N , and preserves independence of a sample that might have been
used to generate x̂. Assuming these conditions hold, ẑN ′(x̂) can be regar-
ded as an unbiased estimator of c⊤x̂+ Eξ [Q(x̂, ξ(ω))], which, again according
to VERWEIJ et al., results in E [ẑN ′(x̂)] ⩾ z∗ holding for any feasible solution
x̂. The variance of the estimator ẑN ′(x̂) can be calculated as:

σ̂2
ẑN′ (x̂) =

1

N ′(N ′ − 1)

N ′∑
n=1

(
c⊤x̂+Q(x̂, ξ(ωn))− ẑN ′(x̂)

)2
. (6.31)

3. Solution selection: a solution can be estimated from the M candidates by
taking the one that yields the best objective value. This can be achieved with
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the following verification:

x̂∗ ∈ arg min
{
ẑN ′(x̂) : x̂ ∈

{
x̂1, x̂2, . . . , x̂M

}}
. (6.32)

4. Solution quality assessment: given the lower and upper bound estima-
tes, the quality of the solution x̂∗ obtained can be assessed by computing its
absolute optimality gap estimate

ẑN ′(x̂)− z̄N , (6.33)

and associated variance:

σ̂2
ẑN′ (x̂)−z̄N

= σ̂2
ẑN′ (x̂) + σ̂2

z̄N
. (6.34)

6.1.4 Value of the stochastic solution (VSS)

After solving a stochastic optimization model, it is important to quantify how be-
neficial was in practice the decision of introducing uncertainty in the model. The
procedure adopted for the d -PSVRSP is the value of the stochastic solution (VSS),
as described in BIRGE and LOUVEAUX (2011). The VSS measures how much is
lost for not considering uncertainty in the model. The next steps present how to
compute the VSS, according to BIRGE and LOUVEAUX.

1. Computation of the expected value problem: the expected value problem
(EV) is computed by: (i) replacing the stochastic parameter ξ in use in 6.1
by its average value, ξ̄ = Eξ [ξ]; and (ii) solving the new single-scenario (the
“average scenario") deterministic optimization problem to obtain the optimal
first-stage decision xEV and the optimal objective value:

zEV = z(x, ξ̄). (6.35)

2. Impact of using the expected value problem: this impact is known as
the expected result of using the expected value problem (EEV). The EEV is
computed as follows: (i) fix in 6.1 the first-stage decision xEV obtained from
the EV; and (ii) solve it, allowing the model to make the best possible second-
stage decision y given the fixation of xEV. This procedure allows to evaluate
how xEV performs when uncertainty takes place, i.e., when scenarios realize.
The objective value for the EEV is given by:

zEEV = z(xEV, ξ). (6.36)
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3. Definition of value of the stochastic solution: the value of the stochastic
solution (VSS) is the cost of leaving the uncertainty apart when making a
decision. The problem in 6.1 is also referred to as recourse problem (RP).
Defining zRP = z(x, ξ), the value of the stochastic solution is then as:

VSS = zEEV − zRP. (6.37)

6.2 Computational studies

In this section the instances generation process is described, as well as the compu-
tational results obtained from applying the method proposed to the s-SPSVRSP.
Implementations are made in Python 3.10.6 and all subordinate linear and mixed-
integer linear programs are solved using the Gurobi Optimizer 10.0.0 through the
Python application programming interface, with all settings default, except the
following: MIPGap = 0.5% (relative gap tolerance), TimeLimit = 3600 seconds,
NoRelHeurWork = 7, MIPFocus = 3, Cuts = 1, and Threads = 12.

The gap value reported by the solver is defined as: gap = UB−LB
UB

× 100, in which
UB stands for “upper bound"and LB stands for “lower bound". These parameter
values were defined empirically from some tests made with a few instances, from
which solutions were obtained faster than in the case that only the solver’s default
parameters were set. The NoRelHeurWork parameter intensifies the heuristic sol-
ver’s search for solutions before the internal solver’s solution process starts, which
leads one to obtaining primal solutions of good quality. The MIPFocus parame-
ter intensifies the solver’s effort to improve the lower bound of the problem. The
Cuts parameter promotes a moderate generation of cutting planes to speed up the
solution process. The Threads parameter limits the number of processing threads
offered to the solver. Higher values for this parameter deliver more processing power
for the solver to manage along its solution process. The reader is referred to the
solver’s website GUROBI (2023) for further details about these parameters.

All computations were performed on an Intel Xeon CPU W-10885M running at
2.40 GHz. A total of 32GB of available RAM were dedicated to instances run serially
(once at a time) using at most 12 threads. All CPU times and relative optimality
gap values presented as results in this section are calculated as arithmetic means.

6.2.1 Benchmark instances

The instance test set for the s-PSVRSP contains 4 basic feasible instances designed
as follows. There are 13 platforms that were used in the design of benchmark
instances. The location of the maritime platforms are illustrated in Figure 6.1a
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and the maritime platforms related to the 4 instances appear in Figure 6.1b. The
descriptive statistics of these platforms are similar to those described in section 5.2.1.

(a) Operator’s clusters. (b) Studies’ instances†.

Figura 6.1: Maritime platforms, clusters, and instances representation. †Supply base
omitted to ease reader’s visualization.

There are 3 sorts of commodities, general cargo, diesel, and water, whose orders
and quantity per order are devised per platform from the operator’s historical data.
The amount of such commodities per order is also typical. Each of these commodity
types has its own onshore and offshore handling efficiency given in h/m2 for deck
cargo and h/m3 for diesel and water. Pickup and delivery orders of deck cargo are
regarded a single order, whereas diesel and water appear only as deliveries, such as
seen in practice.

So, for example, if a platform P1 requests 100 m2 of deck cargo to be delivery,
70 m2 of deck cargo to be picked up, and 600 m3 of diesel, and another platform P2

requests 120 m2 of deck cargo to be delivery, 80 m2 of deck cargo to be picked up,
and 400 m3 of water, P1 and P2 will both be regarded as having 3 orders each, being
each of these orders associated with the coordinates of the platform they belong to.
In other words, for P1 there will be one order for deck cargo (delivery and pickup
together), one for diesel, and another one for water, whereas for P2 there will be 3
orders as well, but the last one will be water. Case P1 and P2 were the only platforms
of a cluster, it would have 6 orders (service nodes) to be fulfilled in a PSV’s route.

Time windows, in the context of the s-PSVRSP, take place due to solely the
existence of some platforms that are not planned to have PSV operations during
the night. By “night", it is meant the period from 7 p.m. to 7 a.m. Thus, time
windows have fixed duration of 12 h: from 7 a.m. to 7 p.m. Each order has its own
time window, which in turn is simply the time window of the platform that owns
that order. Case a PSV violates the earliest time ETih of time window h ∈ Wi for
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order i ∈ O, it is assumed it pays a price per hour given by ζi, corresponding to
the charter hour rate of a large vessel. Case that vessel violates LTih, the penalty
doubles. Penalty values are defined in the Appendix.

The planning horizon for any instance is 8 days, which leads to 8 time windows
per order, case such an order arises from a platform that does not operate at night,
otherwise, the order will have a single time window during 192 h to encompass
the planning horizon. The starting time reference in the instances is zero, so the
time windows appear as a sequence [7, 19], [31, 43], . . . , [175, 187], case no operation
is allowed at night, or as single time window, [0, 192], otherwise. The penalty costs
for violating a time window are also given as instance data. Two PSV sizes are used
in the instances: medium (M) and large (L). Vessel navigation times are calculated
using geodesic distances among the platforms and historical velocities developed in
real operations.

The naming for each instance involves the number of orders, platforms, PSVs,
and a suffix. As an example, 5n-3c-1k-11r_4s_BCi corresponds to an instance
with 5 orders (n), 3 platforms (c), 1 PSV (k), for cluster BCi. The identifiers
11r and 4s are just for instance design control. As another example, the instance
8n-6c-2k-11r_4s_BCbBCc has 8 orders, 6 platforms, 2 PSVs, and considers clusters
BCb and BCc as if they were a single one. The instances designed and the size of
PSVs they include are summarized in Table 6.2, in which #ord, #pla, and #psv
stand for number of orders, platforms, and PSVs, respectively.

Tabela 6.2: Instances.

Name #ord #pla #psv Fleet profile Cluster
5n-3c-1k-11r_4s_BCi 5 3 1 L BCi
6n-4c-1k-11r_4s_BCd 6 4 1 L BCd
8n-6c-2k-11r_4s_BCbBCc 8 6 2 L, M BCb, BCc
10n-7c-2k-11r_4s_BCdBCi 10 7 2 L, M BCd, BCi

The two instances with a single cluster each are those by default defined by the
operator. They were included to report the performance of the model on some of
the default clusters. The other two instances were created in a manner to integrate
clusters that are close to each other, as well as to allow the investigation of the
model’s performance over larger instances than those default.

Besides, as there are usually three vessel departures per day, the instances with
two clusters serve the purpose of assessing the possibility of savings from routing
clusters together, instead of separately, default case that inevitably uses more PSVs
(there will be more departures). Such savings can arise either from alternative route
configurations, or even from the elimination of a vessel departure, case a single PSV
is able to fully attend two clusters, for example.
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Regarding the random scenarios, they are designed as follows. The stochastic
parameter for offshore delays in hours due to adverse environmental conditions fit to
a gamma-distribution with shape a = 0.58 and scale a = 11.46 parameters, denoted
by Siω ∼ Γ(a, b) ≡ Gamma(0.58, 11.46), i ∈ O, ω ∈ Ω. Such a distribution resulted
as the best fit from historical data. Figure 6.2 presents the results of the data fitting.

(a) Best fit from smallest RSS (residual sum of squares).

(b) Gamma distribution shape.

Figura 6.2: Distribution fit results for the stochastic parameter of the problem.

A scenario refers to sampling a delay value for each of the orders of an instance.
As an example, consider the instance 5n-3c-1k-11r_4s_BCi, for which Table 6.3
shows M = 2 independent scenario samples of |Ω| = 5 scenarios ω ∈ {1, 2, 3, 4, 5}
each, generated for the five orders using different seeds per scenario group.

There were generated nbins × M × nsg instances in total, in which nbins = 4 is
the number of basic instances, M = 10 is the number of scenario samples, and
nsg = 5 is the number of scenario samples’ groups, totaling 200 instances. Another
understanding for this number is that each of the 4 basic instances was exposed to
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Tabela 6.3: Example of scenario samples generated for instance 5n-3c-1k-11r_-
4s_BCi. Delays sampled from Γ(0.58, 11.46).

(a) Sample 1.

ω
Delay per order (h).

1 2 3 4 5
1 0 0 1.94 0 0
2 0 0 1.25 5.79 0
3 0 1.11 6.78 0 0
4 0 0 0 0 0
5 5.71 0 1.43 1.23 0

(b) Sample 2.

ω
Delay per order (h).

1 2 3 4 5
1 0 0 0.81 0 0
2 0 14.75 2.88 0 0
3 0 9.01 0 0 0
4 0 7.02 0 0 0
5 0 0 0 0 26.53

50 different uncertainty scenarios in this computational study.
The number of scenario samples’ groups used in the SAA parameters was N ∈

{5, 10, 15, 20, 25}, whereas the large sample value was N ′ = 2000. The value of the
large scenario sample was determined empirically from two series of tests: N ′ ∈
{100, 200, . . . , 900}, then N ′ ∈ {1000, 2000, . . . , 10000}. It was observed that the
upper bound stabilized satisfactorily from N ′ = 2000 scenarios, being meaningless
to employ even larger values in the complete computational study.

6.2.2 Performance

This section demonstrates the overall performance of the approach developed to
solve the s-PSVRSP. However, it is first convenient to illustrate a few representative
solutions. The Figure 6.3 displays two examples of optimal routing solutions obtai-
ned with the approach developed. Those examples plot the location of the platforms
and fictitious locations of the orders associated with them. This was done to turn
the sequence of orders visited more easily visible in the plot.

For example, in Figure 6.3a, the platform A requested two orders numbered as
1 and 2, which share coordinates with A. The route in this figure appears in the
legend as “R1-- which stands for “Route 1-- together with an association between
platform and order attended. Figure 6.3b displays a final solution with two routes.
This solution has two interesting aspects. First, platform C was fully attended with
two visits. Second, platform G had its orders attended in different routes. Such a
solution reveals that routing orders, instead of platforms, offers more flexibility to
the offshore services.

Table 6.4 organizes results for instances pivoted by number of orders #ord, which
in turn already indicates what basic instance is in analysis. The instances resulted
in MILP models ranging from 172 non-negative real variables, 77 binary variables,
and 628 constraints – case of instances with 5 orders and 5 scenarios – to 2779
non-negative real variables, 354 binary variables, and 14477 constraints – case of
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(a) 5-order size instance, one PSV (L). (b) 10-order size instance, two PSVs (L, M).

Figura 6.3: Routing examples.

instances with 10 orders and 25 scenarios. In this table, #ins, #opt, and #tlf
stand for number of instances, number of instances deemed optimal, and number of
instances time limit feasible (run ended with some incumbent found), respectively.

Tabela 6.4: Results grouped by number of orders.

#ord #ins #opt time (s) #tlf gap (%)
5 50 50 16.5 – –
6 50 50 26.3 – –
8 50 50 1111.3 – –
10 50 5 2304.0 45 8.7

Total 200 155 446.6 45 8.7

This table indicates that the model solved to optimality 77.5% of the instances
in roughly 450 seconds, on average. Only 10% of the instances with 10 orders were
solved to optimality, revealing that 45 instances could not be solved within the time
limit of 1 h made available. The time needed to solve instances is smaller than 30
seconds up to 6 orders, whereas is grows drastically by two orders of magnitude for 8
and 10-order instance sizes. Table 6.5 presents additional results devised according
to the fleet in use.

Tabela 6.5: Results grouped by fleet profile.

#psv Fleet #ins #opt time (s) #tlf gap (%)
1 L 100 100 21.4 – –
2 LM 100 55 1219.7 45 8.7

Total 200 155 446.6 45 8.7

This table shows that 100% of the instances with a single large PSV were solved
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to optimality on average in 21.4 seconds. This means that usual clusters designed
by the operator with one dedicated PSV per cluster can be solved quickly from a
model that includes uncertainty in its formulation.

However, joining two clusters in a single one and offering two PSVs to them
turned out to be a harder problem, as only 55% of the instances were solved opti-
mally. In addition to that, the average time spent to solve them was two orders of
magnitude greater than that for a single PSV. Even though, it is still less than 30
minutes, half of the time limit imposed.

Much of this time increase arises from some model’s loss of tractability due to
a graph with more nodes (orders) to be handled, the existence of two PSVs, which
increase the number of binary variables and, also, because of the insertion of the
constraints 6.16 – 6.17 and associated binary variables in the model, which are res-
ponsible for avoiding two PSVs operating simultaneously at a platform. Figure 6.4
presents how the problem bounds evolve over time in the solution process for instan-
ces previously presented in Figure 6.3. It clearly indicates the greater complexity in
larger instances regarding the slow increase in the lower bound, case of Figure 6.4b.

(a) Bounds for 5-order size instance. (b) Bounds for 10-order size instance.

Figura 6.4: Evolution of bounds over time.

6.2.3 Effect of the SAA method

This section presents the results achieved from the application of the SAA method
to the s-PSVRSP. Table 6.6 shows the results pivoted by number of orders #ord
and and by scenario sample sizes ranging according to N ∈ {5, 10, 15, 20, 25}.

The solution time is nearly constant for 5-order instances, regardless of N . Some
time fluctuation appears for instances with 6 orders, but still small, less than 30
seconds, on average. The influence of the number of scenarios is clear for 8-order
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Tabela 6.6: Results pivoted by number of orders and scenarios.

N
(M = 10) #ins #opt time (s) #tlf gap (%)

5 10 10 16.8 – –
10 10 10 16.6 – –
15 10 10 16.4 – –
20 10 10 16.4 – –
25 10 10 16.3 – –

#ord = 5 50 50 16.5 – –
5 10 10 23.8 – –
10 10 10 26.9 – –
15 10 10 24.5 – –
20 10 10 28.2 – –
25 10 10 27.8 – –

#ord = 6 50 50 26.3 – –
5 10 10 869.5 – –
10 10 10 610.3 – –
15 10 10 862.9 – –
20 10 10 1331.0 – –
25 10 10 1882.8 – –

#ord = 8 50 50 1111.3 – –
5 10 5 2304.0 5 2.7
10 10 – – 10 5.2
15 10 – – 10 9.1
20 10 – – 10 10.7
25 10 – – 10 12.6

#ord = 10 50 5 2304.0 45 8.7
Total 200 155 446.6 45 8.7
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size instances. The solution time starts around 900 seconds for 5 scenarios and more
than doubles at 25 scenarios.

For 10-order size instances, optimal solutions appear only for 5 instances and
5 scenarios, taking on average 2304 seconds to be solved. The 45 instances with
best known solutions within 1 h of time limit behaved as expected: greater N

values, despite better approximate the real life, damage the problem’s tractability,
consequently producing greater final gaps.

Table 6.7 shows results pivoted by number of PSVs and scenarios. All instances
with a single PSV were solved to optimality in a nearly constant time. Instances
with 2 PSVs presented more variability in the solution time, ranging from 610.2
seconds for 10 scenarios to 1882.8 seconds for 25 scenarios, revealing the complexity
added by increasing the number of vessels in the problem.

Tabela 6.7: Results pivoted by number of PSVs and scenarios.

N
(M = 10) #ins #opt time (s) #tlf gap (%)

5 20 20 20.3 – –
10 20 20 21.7 – –
15 20 20 20.4 – –
20 20 20 22.4 – –
25 20 20 22.0 – –

#psv = 1 100 100 21.4 – –
5 20 15 1347.7 5 2.7
10 20 10 610.3 10 5.2
15 20 10 862.9 10 9.1
20 20 10 1331.0 10 10.7
25 20 10 1882.8 10 12.6

#psv = 2 100 55 1219.7 45 8.7
Total 200 155 446.6 45 8.7

Concerning the objective function values and gap estimates produced from the
application of the SSA method, the Table 6.8 presents the upper and lower bound
(UB and LB) estimates ẑN ′(x̂) and z̄N , respectively, their standard deviations σ̂ẑN′ (x̂)

and σ̂z̄N , the absolute optimality gapabs = ẑN ′(x̂)− z̄N obtained from those bounds,
its standard deviation σ̂gapabs

= σ̂ẑN′ (x̂)−z̄N , and the associated computing times.
The estimates are based on N ′ = 2000. In addition to that, it is also provided the
relative optimality gap defined by:

gaprel(%) =
UB − LB

UB
× 100 =

ẑN ′(x̂)− z̄N
ẑN ′(x̂)

× 100, (6.38)

Table 6.8 serves the purpose of demonstrating how the upper and lower bound
estimates evolve as N increases. One can note that for greater N values, z̄N tends
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to increase, whereas, given a sufficiently large scenario sample size, i.e., N ′ = 2000,
the values of ẑN ′(x̂) either stay roughly constant (#ord = 6) or tend slightly to
decrease (#ord ∈ {5, 8}). In turn, this behavior produces decreasing gap estimates
as N increases, allowing one to have estimated solution quality measurements in the
form of a gapabs or gaprel.

Tabela 6.8: Solution quality of the SAA method with gap estimates. Only for
solutions in Table 6.4 that are optimal. Currency symbol $ stands for USD.

N
(M = 10)

ẑN ′(x̂)
($× 103)

σ̂ẑN′ (x̂)
($× 103)

z̄N
($× 103)

σ̂z̄N
($× 103)

gapabs
($× 103)

σ̂gapabs
($× 103)

gaprel
(%)

timetotal

(s)
timez̄N

(s)
5 86.036 0.786 70.652 2.334 15.385 2.463 17.9 1501.8 1389.2
10 84.512 1.067 75.527 1.635 8.985 1.953 10.6 2505.3 2390.2
15 84.526 0.767 79.744 2.167 4.782 2.299 5.7 3544.8 3433.7
20 83.279 0.639 77.671 2.326 5.608 2.412 6.7 4534.8 4423.0
25 83.598 0.736 79.555 2.006 4.043 2.137 4.8 5499.5 5385.3

#ord = 5,#psv = 1

5 82.224 0.670 67.864 1.403 14.360 1.555 17.5 1751.2 1605.7
10 84.230 0.927 74.388 2.593 9.842 2.754 11.7 2926.3 2778.4
15 82.581 0.614 78.819 3.485 3.762 3.539 4.6 4024.6 3881.4
20 82.982 0.803 76.927 1.819 6.056 1.988 7.3 5247.1 5099.8
25 83.153 0.786 81.192 2.493 1.961 2.614 2.4 6110.3 5968.8

#ord = 6,#psv = 1

5 79.000 1.017 61.883 1.877 17.117 2.135 21.7 12132.3 11743.2
10 75.957 0.759 65.834 1.550 10.122 1.726 13.3 10158.2 9780.4
15 74.120 0.839 67.576 1.736 6.544 1.928 8.8 12047.2 11646.9
20 76.208 0.868 67.810 1.458 8.397 1.697 11.0 17609.8 17238.1
25 74.248 0.658 70.908 1.357 3.340 1.508 4.5 22824.1 22429.3

#ord = 8,#psv = 2

5 94.376 0.837 81.159 1.670 13.217 1.868 14.0 39012.0 38473.7
#ord = 10,#psv = 2

The SAA method is time consuming, as can be noted from the column timetotal,
and computationally intensive, for the requirement of solving the MILP optimization
model multiples times to obtain z̄N , and solving the linear sub-problem Q(x, ξ(ω))

thousand of times. This explains the non-negligible times even for small, low scenario
size instances, such as 1501.8 seconds for N = 5 and #ord = 5, reaching huge time
values, like that for N = 5 and #ord = 10, what corresponds to almost 11 (eleven)
hours of computations (39012.0 seconds). The most time consuming part of the
procedure resides in obtaining z̄N , which in the present experiments, responds for
94.7% of the total computing time. The complete experimental run took almost 54
hours (2 days plus 6 hours) on the hardware available.
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6.2.4 Effect of introducing uncertainty

This section presents the impact of introducing uncertainty data, modeled as the
stochastic parameter Siω, i ∈ O, ω ∈ Ω, in the MILP model to solve the s-PSVRSP .
Table 6.9 presents the components of the VSS computation procedure, which provide
means to perceive such an impact.

As a general observation, the average VSS values present a growing tendency as
the size of the routing problem increases, ranging from USD 8,418.00 at 5 orders to
USD 20,305.00 at 10 orders, an increase of approximately 2.5×. The extreme VSS
values in the table appear for N = 20, #ord = 5, whose economy estimated for a
single-vessel routing opportunity is USD 6,369.00, and for N = 15, #ord = 8, which
corresponds to the largest savings in the table: USD 28,444.00.

Tabela 6.9: VSS results pivoted by number of orders and scenarios. Only for so-
lutions in Table 6.4 that are optimal. Currency symbol $ stands for USD. †Simple
mean.

N
(M = 10)

z†EV
($×103)

time†zEV

(s)
z†EEV

($×103)
time†zEEV

(s)
z†RP

($×103)
time†zRP

(s)
VSS†

($×103)
5 63.758 20.2 78.727 0.1 70.652 16.8 8.075
10 66.525 20.4 82.559 0.2 75.527 16.6 7.032
15 66.409 20.5 91.521 0.3 79.744 16.4 11.777
20 65.619 20.1 84.040 0.3 77.671 16.4 6.369
25 65.987 20.6 88.390 0.4 79.555 16.3 8.835

#ord = 5 65.660 20.3 85.047 0.3 76.630 16.5 8.418
5 61.812 22.9 75.861 0.1 67.864 23.8 7.998
10 64.280 22.6 85.176 0.2 74.388 26.9 10.788
15 63.966 22.6 88.855 0.3 78.819 24.5 10.036
20 63.390 22.6 88.799 0.4 76.927 28.3 11.872
25 64.304 22.0 95.389 0.5 81.193 27.8 14.196

#ord = 6 63.550 22.5 86.816 0.3 75.838 26.3 10.978
5 56.006 303.7 75.848 0.3 61.883 869.5 13.964
10 56.791 366.1 84.497 0.6 65.834 610.3 18.663
15 56.943 299.5 96.020 0.9 67.576 862.9 28.444
20 56.797 389.8 87.873 1.1 67.810 1331.0 20.063
25 57.561 356.8 91.297 1.3 70.908 1882.8 20.389

#ord = 8 56.820 343.2 87.107 0.9 66.802 1111.3 20.305
5 74.413 747.0 87.444 0.7 79.601 2304.0 7.844

#ord = 10 74.413 747.0 87.444 0.7 79.601 2304.0 7.844

Another important observation is that zEV ⩽ zRP, which is expected, but it could
inadvertently lead to regard the recourse problem solution as a more costly option,
hence, undesired. Or, that said in another way, using the expected value problem’s
solution is cheaper, therefore better. That’s a unsuitable interpretation, since the
value of introducing uncertainty in the modeling is precisely to achieve the best
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average cost performance for upcoming scenarios.
Computing the VSS is time consuming, because the time to solve the expected

value problem is not negligible, ranging from 20.2 seconds to approximately 12.5
minutes (747.0 seconds). In fact, it can be very difficult to solve too. The total
computing time in the entire experimentation with VSS was 32.1 hours (1 day plus
roughly 8 hours) and, so far, the SAA method together with VSS computations add
up to 86.1 hours of computations (3 days plus 14 hours).

An interesting effect happens with timezEV and timezRP . For #ord = 5, timezEV

is on average nearly 4 seconds greater than timezRP . At #ord = 6, the opposite
happens, i.e., timezRP becomes on average nearly 4 seconds greater than timezEV .
For #ord ∈ {8, 10}, timezRP turns on average one order of magnitude greater than
timezEV . This shows how fast the recourse problem’s complexity increases with the
number of scenarios.

6.2.5 Routing costs distribution

This section reveals how the costs in the objective function of the s-PSVRSP are
distributed with respect to first and second-stages. Table 6.10 presents the cost
segregation per number of orders and scenario groups. The columns of that table
are:

• Obj(k$): objective function value.

• 1st(k$): total first-stage cost.

• 2nd(k$): total second-stage cost.

• 2ndwait (k$): second-stage cost component related to sum of all waiting times.

• 2ndrv(k$): second-stage cost component related to the sum of all violations of
time window ready times.

• 2nddv (k$): second-stage cost component related to the sum of all violations
of time window due times.

• 2nddelay (k$): second-stage cost component related to the sum of all delay
costs.

• 2nd
Obj : ration between total second-stage costs and objective value.

• 2nddelay
Obj : ration between the sum of all delay costs and objective value.

• #r: number of routes in the optimal solution.
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The first relevant aspect in the Table 6.10 is that the total second-stage costs
represent an expressive fraction of the objective function for all N and instances,
reaching on average practically 45% when #ord = 5. This percentages reveals how
influential the scenario realizations are, even in the optimal solutions.

Other trait of the problem is the inevitable second-stage cost associated with
delays, which manifest as realizations of the random parameter. The fraction of the
delay-related costs in comparison with the objective function is significant, ranging
from a minimum of 5.5%, for N = 5,#ord = 10, to 10.2%, for N = 15,#ord = 5.
This indicates that there will always exist extra diesel consumption due to delays,
and there is no decision making capable of eliminating this cost completely.

Tabela 6.10: Routing costs distribution in the first and second-stages. Only for
solutions in Table 6.4 that are optimal. Currency symbol $ stands for USD. †Simple
mean.

N
(M = 10)

Obj†
($× 103)

1st†
($× 103)

2nd†

($× 103)
2nd†

wait
($× 103)

2nd†
rv

($× 103)
2nd†

dv
($× 103)

2nd†
delay

($× 103)

2nd
Obj

†

(%)

2nddelay

Obj
†

(%)
#r†

5 70.652 42.622 28.030 12.015 9.771 0.755 5.489 39.2 7.6 1
10 75.527 41.839 33.688 13.280 9.282 3.432 7.694 44.4 10.1 1
15 79.744 42.029 37.715 14.132 9.920 5.417 8.245 47.0 10.2 1
20 77.671 41.485 36.186 16.720 8.664 4.053 6.749 46.2 8.6 1
25 79.555 41.717 37.838 16.710 8.175 5.750 7.202 47.3 9.0 1

n = 5 76.630 41.938 34.691 14.571 9.163 3.881 7.076 44.8 9.1 1
5 67.864 42.355 25.509 11.048 7.650 1.409 5.402 37.4 7.8 1
10 74.388 42.254 32.134 13.904 7.732 3.092 7.406 42.7 9.7 1
15 78.819 42.350 36.469 16.689 6.547 5.382 7.851 45.4 9.8 1
20 76.927 42.622 34.305 14.314 7.159 5.997 6.834 44.4 8.8 1
25 81.193 42.658 38.534 17.212 6.870 6.254 8.198 47.0 10.0 1

n = 6 75.838 42.448 33.390 14.634 7.192 4.427 7.138 43.4 9.2 1
5 61.883 46.915 14.968 5.916 3.715 0.491 4.846 23.7 7.6 2
10 65.834 47.143 18.691 9.454 2.589 1.372 5.275 28.0 7.9 2
15 67.576 47.350 20.226 8.178 3.721 2.662 5.666 29.5 8.3 2
20 67.810 47.064 20.746 7.984 4.908 2.813 5.041 30.3 7.4 2
25 70.908 47.254 23.654 9.001 4.003 4.856 5.795 33.1 8.1 2

n = 8 66.802 47.145 19.657 8.107 3.787 2.439 5.325 28.9 7.9 2
5 79.601 65.035 14.566 6.196 3.568 0.438 4.364 18.2 5.5 2

n = 10 79.601 65.035 14.566 6.196 3.568 0.438 4.364 18.2 5.5 2

At last, the time window violation costs indicate that violating the earliest time
window moment is a recourse action more expensive, in the majority of the cases,
than violating the latest time. There is no surprise in it, as the penalty for violating
the latest time is twice that of an earliest moment, what makes the solution process
to avoid solutions in which the offshore services finish after the window closing
moments. This in turn provokes more waiting times before starting a service, leading
to relevant second-stage costs related to waiting.
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6.3 Discussion on the practical application

The approach developed in this dissertation to solve the s-PSVRSP is relevant to
practical use for some reasons. First, it provides a formal decision method to design
optimal routes in a small time for operator’s default cluster sizes of 3 and 4 platforms
– i.e., 5 to 6 orders, usually – in opposite to traditional spreadsheets employed in
routes’ planning. For 6-platform size groups and 2 vessels, still not practiced by the
operator, the solution time increases considerably, but it continues acceptable for
operational purposes. Moreover, these routes present economical gains for taking
into account exogenous uncertainty, what is demonstrated from the VSS indicator.
At 7 platforms per routing and 2 vessels, the experimental results indicate that the
approach developed is not recommended for operational use.

Secondly, despite the option for modeling the decisions associated to orders’
arrival and departures time as second-stage recourse actions, which in turn prohibits
one to define in the first-stage when the service will take place in time, the approach
adopted for the s-PSVRSP still preserves some scheduling predictability, inasmuch
as time window related decisions are made at the moment that the route is defined.
Hence, operational personnel can be notified in advance about what will be the time
windows selected for each order’s service.

At last, the model developed can produce routes that violate time windows, at
the price of penalization costs, whenever this is the best decision to make. This
results operational flexibility to the logistics system in relation to anticipating or
postponing some orders’ service, at a price. An aspect of the model that helps in
mitigating the violation cost associated with the earliest time window moment is the
possibility to wait before starting a service, since the fuel cost per hour is expected
to be much smaller than a violation penalty. Be noted that defining penalty costs
may not be a simple task in real life, since it requires an agreement on how much
will be charged for having a time window violated.
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Capítulo 7

Conclusions

These chapter presents a consolidated view of the research topics and results achieved
in this dissertation.

7.1 Regarding the current work

This dissertation introduced the platform supply vessel operations planning problem
(PSVOPP), which appears in offshore logistics for oil and gas explorations and
production activities. This problem was separated in two branches. One of them
related to the tactical task of optimally organizing maritime platforms into smaller
groups, called clusters, so that the onshore services at the supply base and the
supply network backwards, responsible for delivering and collecting cargoes at the
base, can be plan in advance the transport of cargoes associated with a specific
cluster. This branch was named maritime platforms clustering problem (MPCP). In
order to solve instances of the MPCP, it was proposed an MILP model that resembles
an m-dimensional multiple knapsack problem, in which platforms are m-dimensional
items and a set of PSVs plays the role of multiple-compartment multiple knapsacks.

A set of 60 realistic instances was artificially designed and used to verify the
performance of the MILP model using a commercial solver, resulting in 37% of the
instances solved to optimality within 250 seconds, on average, whereas the remainder
63% of them presented good quality solutions with average gap 2.7%, within 3600 se-
conds set as run-time limit. The MILP model also entails a composite objective func-
tion that minimizes two conflicting objectives weighed by α ∈ {0, 0.25, 0.5, 0.75, 1}.
First, the number of cluster, and second, the supply base berth time that each of
these clusters impose at the base for loading of cargoes. Among the instances with
α = 0.75, the solution approach succeeded optimally in 67% of them within roughly
500 seconds on average, providing a suitable balance with respect to minimizing
the number of clusters, without disregarding the associated berth times that these
clusters produce. Among the remainder 33%, the average gap presented was 0.7%,
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which means good quality solutions as well.
The second branch covered operational decisions related to routing and schedu-

ling of platform supply vessels (PSVs). To cope with this matter, two MILP models
for routing were developed. The first one includes several features from the real life
problem of PSVs’ routing, including heterogeneous and multiple-compartment fleet,
multiple commodity types – some of them competing for the same compartment
space – and scheduling aspects such as hard time windows and the possibility to
determine routes with multiple visits per platform and plan in advance for multiple
trips. This problem was named deterministic platform supply vessel routing and
scheduling problem (d -PSVRSP).

A set of 3600 realistic instances was artificially designed and used to verify the
performance of the MILP model using a commercial solver. Moreover, the solution
process of this model also employed cutting planes in the form of rounded capacity
inequalities (RCIs), whose development was not a dissertation’s contribution, just
their conceptualization as cuts and application in the MILP model. Experiments
revealed that using RCIs increased the number of optimal solutions in approximately
30%, i.e., from 1989 (55%) to 2563 instances (71%) solved optimally out of 3600.
The sub-optimal solutions presented average gap of 10.1%. The MILP model also
considers a composite objective function α-weighed, which minimizes two conflicting
objectives: consumption of fuel by the vessels in use and route duration. Once more,
adopting α = 0.75 showed as interesting choice to cope with both objectives.

The second routing model, despite embracing a smaller number of real life fea-
tures, still provides good coverage of the real operational scenario and, in addition
to that, includes uncertainty data in its MILP model formulated as a deterministic-
equivalent program from a two-stage stochastic program with recourse. This pro-
blem was called stochastic PSVRSP (s-PSVRSP). The uncertainty data consists
of operational delays – originated from adverse environmental conditions that tem-
porarily interrupt offshore services – unknown at the moment that the first-stage
decisions related to routing and selection of soft time windows need to be made,
but that unfold in the second-stage when the route is ongoing, what in turn allows
that recourse decisions, modeled as time window violations and waiting times before
starting an offshore service, be made.

Solving the s-PSVRSP for a large number of scenarios is intractable. Hence,
the sample average approximation method (SAA) was employed, accompanied with
a procedure to statistically estimate the quality of the solutions achieved from es-
timates for absolute and relative optimality gaps, since the SAA method provides
only an approximation for the solution of the so-called “true"stochastic optimization
problem from samples with a countable number of scenarios. A set of 200 realistic
instances was artificially designed and used to verify the performance of the MILP
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model using a commercial solver. By using the SAA method, it was possible to solve
optimally 77.5% of the instances in roughly 450 seconds, on average, whereas the
remainder 22.5% achieved the average gap of 8.7% by the end of the run-time limit
set.

Regarding the quality estimation for the optimal objective function values yi-
elded by the SAA method with respect to their true counterpart, i.e., the original
stochastic program, it was possible to achieve gap values inferior to 5% in 75% of
the instances (150), and inferior to 14% in a overall view. As a mechanism to me-
asure the benefit from introducing uncertainty in the model, it was computed the
value of the stochastic solution (VSS), which measures how much is saved for con-
sidering random data in the model. Experiments revealed savings in USD ranging
from 6,369.00 to 28,444.00 per route, which demonstrates the economical relevance
of turning uncertainty data part of the model.

At last, the results achieved with all three MILP models in the approaches deve-
loped demonstrate that they are suitable for real use in offshore oil and gas logistics
operations related to transportation of cargoes, as such approaches provided good
quality solutions for several instances whose sizes are similar to those seen in prac-
tice, concerning the number of platforms, orders, and PSVs.

7.2 Suggestions for future work

This this section points out a few directions for future works that can build upon
the contributions of this dissertation. Such suggestions are itemized as follows.

1. On the MPCP

• Consider other clustering metrics. For instance, drilling rigs construct
wells in phases, which can lead to different cargo demand profiles per
phase. It could be relevant to form cluster according to phase-related
cargo demand profiles.

• Extend the model to introduce more detailed berth scheduling decisions
with associated constraints, such as limited number of berths, aiming to
provide more fine-grained plans for supply base operations.

• Introduce uncertainty in the model, for instance to cope with demand
fluctuations.

• Consider different MILP formulations and combinations of heuristic and
exact methods.

• Introduce more specific cluster formation costs.
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2. On the routing problems d -PSVRSP and s-PSVRSP

• Develop heuristic and/or other exact methods that allow one to solve
larger instances, case in which the models performed poorly.

• Introduce decisions regarding PSVs’ speed.

3. On integration

• Design an integrated solution method involving the clustering and routing
models on a rolling-horizon based form, possibly in an environment where
uncertainty can be dynamically evaluated, such as stochastic simulation
models.
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Appendix

This section formally defines additional data pertinent to the MILP models previ-
ously introduced.

Vessel’s capacity factor. Constraints (5.36) involve a capacity-related factor per
vessel defined as:

ξk =
∑
q∈Q

RQk
q WQq ∀k ∈ V (7.1)

The parameters and sets necessary to devise (7.1) are defined as follows:

Mqc Maximum demand of the platform c ∈ C with res-
pect to the compartment q ∈ Q. Defined as: Mqc =

max
{∑

i∈O:ci=c

∑
pi∈Pq∩P−

|Di|,
∑

i∈O:ci=c

∑
pi∈Pq∩P+

Di

}
.

Qq Average capacity with respect to q ∈ Q. Defined as: Qq =
∑

k∈V Q
k
q/|V|.

RQk
q Relative capacity of q ∈ Q for k ∈ V . Defined as: RQk

q = Qk
q/Qq.

RDMqc Relative demand of c ∈ C regarding q ∈ Q. Defined as: RDMqc = Mqc/Qq.
CDMq Consolidated relative demand of q ∈ Q. Defined as: CDMq =∑

c∈C RDMqc.
WQq Relative weight of compartment q ∈ Q. Defined as: WQq =

CDMq/
∑

q∈Q CDMq.

Time-to-cost conversion factor. The parameter η monetizes f2 in (5.37) so that
the resulting value ηf2 and f1 be commensurable. The definition of η is:

η =


−, if α = 1

1, if α = 0

UB|α=1

UB|α=0
, if α ∈ ]0, 1[

(7.2)

In equation (7.2), η does not need to be defined when α = 1, since in this
case only the cumulative fuel cost f1 is the minimizing target. Then it is assumed
η = 1 if the vessels’ cumulative utilization time, i.e., f2, is solely what should be
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minimized. UB|α=1 and UB|α=0 stand for the best upper bound obtained when
running a problem’s instance twice: one time for α = 1 and another fixing α = 0.
Hence, the relation UB|α=1

UB|α=0
yields a cost per time factor that properly allows to

monetize f2.

Big-Ms. Definition of sufficiently large numbers.

M1 Big-M value used in constraints 4.11 and 4.13. Defined as :
M1 = max

{∑
i∈C

∑
p∈P1

σpLip,
∑

i∈C
∑

p∈P2
σpLip

}
.

Mij Big-M used in constraints (5.11). Defined as:

Mij =


maxw∈Wj

{LTjw} − STj, if j ∈ O \ O−

DTj −
∑

p∈P−
1p=pj |Dj|σp −mink∈V

i′∈O

{
T k
i′hk+1

}
− STj, if j ∈ O−

max
{
AT,maxi′∈O

{
DT i′ +maxk∈V

{
T k
i′j

}}}
, if j ∈

⋃
k∈V N

k
0

,

in which DT i′ =

maxw∈Wi′
{LTi′w} , if i′ ∈ O \ O−

DTi′ −
∑

p∈P−
1p=pi′ |Di′ |σp −min k∈V

j′∈O

{
T k
j′hk+1

}
, if i′ ∈ O−

and AT = maxk∈V
{
AT k

}
.

M2,i Big-M used in constraints (5.26). Defined as:
M2,i = DTi −

∑
p∈P−

1p=pi |Di|σp −mink∈V
j∈O

{
T k
jhk+1

}
− STi, ∀i ∈ O−.

Mk
3 Big-M used in constraints (5.27) and (5.29). Defined as:

Mk
3 = max

{
maxi∈O\O−{maxw∈Wi

{LTiw}−STi} ,maxi∈O−

{
DT

k

i −STi

}}
−

minj∈O

{
T k
hk+1,j

}
, ∀k ∈ V , in which DT

k

i = DTi −
∑

p∈P−
1p=pi |Di|σp −

minj∈O

{
T k
jhk+1

}
.

M4,i Big-M used in constraints (5.28). Defined as:
M4,i = DTi −

∑
p∈P−

1p=pi |Di|σp −mink∈V
j∈O

{
T k
jhk+1

}
, ∀i ∈ O−.

Mk
5 Big-M used in constraints (5.30). Defined as:

Mk
5 = max

{
maxi∈O\O−

w∈Wi

{LTiw}+maxi∈O
{
T k
ihk+1

}
,maxi∈O− {DTi}

}
,

∀k ∈ V .

Vessel capacities. The net capacities for compartments of deck cargo (m2), diesel
(m3), and water (m3) adopted per vessel size for a PSV k ∈ V are:

Qk
deck area =


450, if DWT k = 1500

570, if DWT k = 3000

650, if DWT k = 4500

(7.3)
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Qk
diesel =


600, if DWT k = 1500

1000, if DWT k = 3000

1400, if DWT k = 4500

(7.4)

Qk
water =


500, if DWT k = 1500

800, if DWT k = 3000

1000, if DWT k = 4500

(7.5)

Fuel consumption costs. The diesel costs per hour for each vessel depends on
its status. Diesel price per ton used was obtained from OILMONSTER (2022), and
converted to cubic meters using density 852 kg/m3, whereas vessels’ consumption in
m3/h are typical values for a large PSV 4500. Consumption values for vessel sizes
S and M were assumed proportional in DWT from a large PSV 4500. The hourly
costs in USD/h set in the instances for a PSV k ∈ V are:

θk = φk =


31, if DWT k = 1500

62, if DWT k = 3000

94, if DWT k = 4500

(7.6)

γk =


242, if DWT k = 1500

485, if DWT k = 3000

727, if DWT k = 4500

(7.7)

δk =


184, if DWT k = 1500

368, if DWT k = 3000

551, if DWT k = 4500

(7.8)

Setups and safe positioning. The values adopted for setups and safe positioning
in hours per PSV size are:

SEk =


0.19, if DWT k = 1500

0.46, if DWT k = 3000

0.51, if DWT k = 4500

(7.9)
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SP k =


0.39, if DWT k = 1500

0.91, if DWT k = 3000

1.02, if DWT k = 4500

(7.10)

Time window violation costs. It is assumed time window violation penalties
ζi = 1, 250.0 USD/h for violating the earliest time window moment, and βi = 2ζi =

2, 500.0 USD/h, for violating the latest time window moment, given i ∈ O. USD
stands for United States Dollars. The value for ζ corresponds to the hourly cost of
a PSV chartered at a daily rate of USD 30, 000.0. This daily rate was estimated
from MENDES VIANNA (2016).
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