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Operações humanitárias envolvem muitos atores, cada um com seus próprios

procedimentos, mas com o objetivo de ajudar o maior número possível de pessoas.

No entanto, como seus objetivos muitas vezes se sobrepõem, as organizações podem

acabar disputando os mesmos recursos e colocando em risco a eficiência da operação.

Além disso, gestão de estoque de itens perecíveis é um grande desafio, pois itens dete-

riorados podem representar uma ameaça à população, e custos significativos devido

às dificuldades relativas a políticas de descarte. Este estudo tem como objetivo de-

senvolver modelos de gestão de estoque para ambos os desafios. O primeiro modelo

aplica um Processo de Decisão Markov para otimizar a gestão de estoque de itens

perecíveis. Além disso, o segundo modelo apresenta a aquisição e distribuição co-

laborativas, em um sistema de fornecimento duplo. Ele combina um Processo de

Decisão de Markov com um modelo Estocástico de Dois Estágios através de um

algoritmo de avaliação de parâmetros. Para ilustrar a aplicabilidade de nossos mod-

elos, propomos experimentos para demonstrar como diferentes cenários de demanda

podem afetar as políticas de aquisição e distribuição. Os experimentos mostram

que os modelos podem ser implantados para horizontes de longo e curto prazo para

operações de pequena e grande escala, com pequenos requisitos de processamento.
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Humanitarian operations involve many actors, from governmental entities to hu-

manitarian organizations. Each has its own objectives and procedures within the

overarching goal of aiding as many victims as possible. However, as their objectives

often overlap, organizations may end up disputing the same scarce resources, jeop-

ardising the efficiency of the operation. Besides, management of perishable goods

is a great challenge for logistic managers, since deteriorated items may impose a

threat to the population, and a huge cost due the difficulties underlying their dis-

posal policies. This study aims at developing inventory management models for

both challenges. The first model applies a Markov Decision Process to optimize

the inventory management of perishable items. Further, the second model presents

collaborative acquisition and distribution of goods, in a dual-sourcing system. It

combines a Markov Decision Process with a Two-Stage Stochastic model through

a parameter evaluation algorithm. To illustrate the applicability of our models, we

propose experiments to demonstrate how different demand scenarios can affect the

acquisition and distribution policies in humanitarian operations. The experiments

show that the models can be deployed for both long and short term horizons for

both small and large scale operations, with small processing requirements.
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Chapter 1

Introduction

From 2016 to 2020, the international disasters database1 registered 2,679 disasters,

496 in 2020 only. They disrupted the lives of over 590 million people and caused al-

most US$ 900 billions worth of damages. Over the same period, only approximately

60% of the disaster relief funding appeals were met2. Given the limited funding, cost

efficiency is vital and humanitarian organizations (HO) should reduce operational

costs whilst lessening the victims’ suffering (Besiou and van Wassenhove 2020).

A humanitarian operation often comprises hundreds of supply chains that over-

lap, interact, and even compete for the same resources. They aspire to meet uncer-

tain and highly dynamic demands with little to no information on what is needed,

when or where it is needed (Holguín-Veras et al. 2014). Haiti’s 2010 earthquake

response, with over 200 organizations simultaneously deployed in relief operations,

To improve efficiency, organizations should work together to achieve a common

objective (Dubey and Altay 2018). Humanitarian supply chains must avoid dupli-

cation of resources and services by filling gaps or preventing overlaps. Therefore,

our study promotes coordination between multiple organizations which is vital to

the success of a disaster operation; it involves risk and resource sharing through a

coherent action plan (Li et al. 2019).

As disasters can damage the local infrastructure, disaster relief supply chains

must consider uncertain road network availability, as well as possible disruptions of

basic services such as water, power, communications, and fuel supplies. These may

impair the relief effort, interfere with or disable machinery and vehicles used in the
1EM-DAT, https://www.emdat.be
2https://fts.unocha.org/appeals/overview/2020
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relief operations (Kaatrud et al. 2003, Kovács and Spens 2007). Disasters can also

affect ports, airports, public buildings, schools and other facilities typically used as

shelters or relief centers, capping or preventing their use in the response (Rahmani

et al. 2018). Finally, disasters may affect the supply chains of local suppliers and

logistics operators, hindering their ability to contribute with the relief effort (Kovács

and Spens 2007, Murray 2005).

Since purchasing from local suppliers supports the long-term recovery of the

affected region, humanitarian organizations must not necessarily always seek min-

imum costs. Instead, they can focus on providing equal opportunities for distinct

suppliers in an effort to drive the region’s economic recovery (Balcik et al. 2016).

This involves seeking the right compromise between promoting local services and

ensuring a reliable and sustainable supply chain.

Furthermore, long-term projects are an important part of the operations of a hu-

manitarian aid organization. Commonly called continuous aid work operations, they

arise when people are exposed to disasters such as military or civil war (Afghanistan,

Yemen, Congo, Syria, etc.), political insurrection (Syria), droughts (Ethiopia, Pak-

istan, etc.) and extreme poverty (Liberia, Sudan, etc.). In such cases, people af-

fected by disasters are at considerable risk and the need for humanitarian assistance

is clear. That includes a wide range of services from medical assistance and shelter

to basic daily supplies like water, food, sanitation and hygiene products.

The uncertainty of supplying these needs is high, since the supply is strongly

dependent on donations of goods such as water, food and medical supplies. Fur-

thermore, 90% of the crises affected people live in developing countries that often

cannot provide sufficient assistance themselves (Rottkemper et al. 2012). Moreover,

an important feature of demand patterns in relief items is irregularity (in terms of

what is needed and for whom, where it is needed, when it is needed and how much).

An important and often overlooked characteristic of supply management for hu-

manitarian operations is perishability. Since donations come from different parts of

the world, in different times, it is important to keep track of the expiration dates of

the received supplies. Deteriorated goods not only can harm the people in need if

distributed, but also generate disposal costs, which can be very high depending on

the type of the supply, thus increasing the total inventory cost. Despite its growing

2



influence in the inventory management of commercial supply chains, perishability

of donations and procured goods is not often accounted for in the humanitarian

operations literature.

As the number and complexity of humanitarian crises continue to increase, in-

ventory management processes must adapt to face the new challenges. To help

in that end, this research develops two new inventory management frameworks for

humanitarian operations. The first one focused on long-term operations, and the

second applicable to both long-term and short-term operations.

The first framework considers uncertainties in both donations and demand for

supplies. Moreover, it accounts for perishability (limited shelf life) of items in stock,

whose shelf life may expire and hinder the operation’s management, also incurring

additional expenses such as disposal and waste management costs. Using Markov

Decision Process, the framework allows decision makers to ensure that the goods

in the inventory are proper for consumption without necessarily keeping track of

individual expiration dates for each item in the inventory.

The framework also accounts for possible increases in the supply obtained from

the action of the decision maker. These increases may be due to inventory trans-

fers from nearby facilities, aggressive advertisement campaigns, etc. Nonetheless,

regardless of the underlying reason, these increases come at a cost. Bearing that in

mind, we propose a technique to find an optimal long-term storage policy, consider-

ing inventory and perishability costs, as well the costs of the provoked increases in

donations.

To illustrate the approach, we propose experiments to demonstrate how different

shelf lives can affect the optimal ordering policies of critical perishable goods, such

as blood packs or medicine, in humanitarian operations.

The second part of this research proposes a novel framework that includes dual

source procurement under uncertainty whilst optimising the collaboration among

multiple humanitarian organizations (HO) or demand points; it includes joint pro-

curement from multiple suppliers and centralised warehousing and distribution of

relief supplies to each individual HO. Recognised for their relatively low implemen-

tation costs and technological requirements, these mechanisms are conducive to the

relief effort (Balcik et al. 2010).

3



As the local supply chain may have been disrupted by the disaster, each local

supplier is a viable, albeit unreliable source of relief supplies. Hence, there is a

probability that a local supplier will not deliver the procured items in a timely

manner. A dual sourcing model ensures that another supplier outside the affected

region can always provide the procured items at the required time, but at a higher

price. To pursue a trade-off between costs and reliability, the model penalises unmet

demands and missed deliveries, which cannot be timely refunded.

Our framework is also suitable to support inventory and distribution decisions

from governmental agencies responding to disasters. They typically set aside a Dis-

tribution Center (DC) that is close to the shelters/demand points but still accessible

from the outside world (in the case of a large-scale disaster) or is strategically located

(in the case of frequent small-to-medium disasters). The DC can be an existing per-

manent warehouse or a set of mobile storage units (when a permanent warehouse

is not an option), and it serves multiple shelters and/or demand points. The gov-

ernment itself can be treated as a reliable supplier that typically procures items for

pre-positioning/preparedness, and can quickly deploy supplies to the DC from other

regions (or even internationally), whereas local suppliers can be collectively seen as

unreliable suppliers as they may be affected by the disaster.

The proposed framework integrates a two-state stochastic programming (TSSP)

into a Markov decision process (MDP), to create a Parameter Evaluation Algorithm.

While the MDP prescribes an optimal purchasing policy (how much to buy? ), the

TSSP splits the optimal purchasing policy into individual orders for each supplier

(where to buy? ) and identifies an optimal distribution policy in accordance with

the number of acquired goods to supply the operations (where to allocate or send? ).

The innovative idea here is that we use TSSP to translate the long-term perspective

of an MDP solution into several short-term solutions.

By combining the two methodologies, the framework also avoids the combinato-

rial explosion of scenarios imposed by multi-stage stochastic programming models

for large time horizons and circumvents the limitations on the number of possible

actions within an MDP that includes distribution and acquisition decisions. Exploit-

ing the strengths of both approaches, we derive an inventory management model for

multi-sourcing and integrated distribution of relief supplies that is suited for two

4



settings: (1) disaster response or recovery operation with finite random duration,

(2) long-term disaster response or recovery operation.

This study is highly motivated by the disaster response operations for the land-

slides and floods that constantly affect the city of Petrópolis, Brazil, more recently

in February 2022. Located in the mountainous region of the state of Rio de Janeiro,

the city encompasses hundreds of communities susceptible to landslides, which are

mapped and categorised accordingly to landslide risks and probabilities. Munici-

pal and State government, as well as dozens of organizations acted on the disaster

response across multiple regions of the city, with virtually no coordination among

them. Furthermore, the response usually is heavily reliant on donations, which is an

unreliable source of supplies. Given the characteristics of these recurring disasters,

it is clear that a coordinated stochastic framework for disaster response could help

improve the efficiency of humanitarian operations. It is such a framework that is

designed and proposed. An experiment using the 2022 Petrópolis’ landslide disaster

as background is presented to illustrate the frameworks applicability, as well as a

numerical experiment involving hygiene kits in Indonesia, a region with recurring

disasters.

All in all, this research tackles two vital and recognisable problems in inventory

management for humanitarian operations: perishability (or obsolescence) of goods

and unreliable supply chains. The first model developed aims to optimise the inven-

tory management of an organization acting on slow on-set disasters, such as political

crises and droughts, by presenting an easy to implement framework that implicitly

accounts for perishability. The second framework presented expands the first by

assuming a centralised inventory management model within a distribution center,

which serves multiple demand points, humanitarian organizations acting on the dis-

aster, and sources of supply, while considering that some supliers may be unreliable.

The second framework can be applied to long-term operations, slow-onset disas-

ters or operations where the time horizon, although finite, is not perfectly defined,

suitable for humanitarian operations.

The remainder of this research is organised as follows. Chapter 2 presents a

brief literature review including general aspects of inventory management and re-

lief distribution efforts in humanitarian logistics, applications of operations research
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and management science to this field, as well as the experiments used to demon-

strate its applicability. Chapter 3 details the inventory management for perishable

items framework, introduces the mathematical formulation and presents an exper-

iment to demonstrate its applicability in a blood bank operation, Chapter 3 was

also published as a paper in the International Journal of Disaster Risk Reduction

in 20183. Chapter 4 presents the multi-sourcing distribution framework with unreli-

able supplier, including numerical experiments to illustrate the model’s applicability

and analyse the results and insights. Finally, Section 5 concludes the research and

discusses future research directions.

1.1 General Objective

The general objective of this research is to demonstrate that the use stochastic

techniques and mathematical programming can improve inventory management ef-

ficiency in humanitarian operations, for both acquisition and distribution of supplies,

assuming long and short term operations.

1.2 Specific objectives

• Conceptualize humanitarian logistics and inventory management

• Present two of the greater challenges of inventory management for humanitar-

ians operations: perishability of items and unreliability of suppliers

• To develop two stochastic mathematical models for selection of optimal or-

dering and distribution policies in inventory management for humanitarian

operations

• Demonstrate how utilization of Markov decision processes can improve the

efficiency of inventory management in humanitarian operations

3The authors of the paper are authorized to use it on their own thesis for
non commercial purposes, according to the publisher guidelines, presented at
https://www.elsevier.com/about/policies/copyright/permissions, access on 04/01/2023
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Chapter 2

Literature review

Accounting for approximately 80% of disaster relief efforts, logistics is vital for a

successful humanitarian operation (Campos et al. 2012, Çelik et al. 2014). Such

a prominent role led HOs to adapt conventional logistics techniques to disaster

mitigation, with limited success (Besiou and van Wassenhove 2020). Despite the

similarities, there are major differences between conventional logistics and the logis-

tics of humanitarian operations - humanitarian logistics (HL), as the latter involves

uncertain and intermittent demands that vary with time, location and disaster mag-

nitude. HL should also consider destroyed or compromised infrastructure in the

disaster site and its surroundings and unconventional objectives, such as mitigat-

ing suffering. It also diverges from military logistics, which have clear command

and control structures, and adopt possibly different attitudes towards the principles

of neutrality, impartiality and humanity (Van Wassenhove and Pedraza Martinez

2012). Such specificity renders humanitarian supply chains unique and difficult to

manage (Habib et al. 2016, Kovács and Spens 2007).

By appropriately planning and responding rapidly to disasters, HL aims to pro-

mote effective recovery for the affected population and to reduce or circumvent loss

to human life and property (Mishra et al. 2020). It encompasses very different

operations at different times, such as procurement, warehousing, inventory man-

agement, transportation, and distribution of products and/or resources plus radio

and satellite communications, water and sanitation, construction and rehabilitation

of buildings and energy provision (Balcik et al. 2016, Tabbara 2008). Despite the

adverse conditions, analysts and decision makers must evaluate the needs, establish
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functional relationships with suppliers and consumers, and establish the required

infrastructure (Tabbara 2008). In summary, as per Beamon and Kotleba’s defini-

tion, Humanitarian Logistics (HL) is an operation that deals with the flow of people

and materials appropriately and timely to assist victims of a disaster, with the main

objective of meeting, correctly, the needs of the largest possible number of victims

(Beamon and Kotleba 2006).

Although under drastically different conditions, HL and commercial logistics

share the same activities. Therefore, one can measure the importance of commer-

cial chains’ key success factors to improve HL’s efficiency (Lu et al. 2006, Pettit and

Beresford 2009, Power et al. 2001). Abidi et al. (2013) maps 8 success factors for

relief chains: strategic planning; inventory management; transportation and capac-

ity planning; information management and technology utilisation; human resources

management; collaboration; continuous improvement; and supply chain strategy.

All these operations have a common goal of aiding people in their survival needs.

Such an aid requires efforts that are typically divided in two broad lines: continuous

aid work, and disaster relief (Cozzolino 2012, Kovács and Spens 2007, Van Wassen-

hove 2006). Continuous aid work is mainly required for slow on-set disasters, such

as plagues (e.g. famine and droughts) and crises (e.g. political and refugee crises).

The term disaster relief is reserved for sudden on-set disasters, such as natural dis-

asters (e.g. hurricanes and earthquakes) and man-made destructive actions, e.g.

industrial accidents and terrorists attacks (Cozzolino 2012, Kovács and Spens 2007,

Van Wassenhove 2006).

Habib et al. (2016) divides the humanitarian supply chain in two parts: relief

supply chain and relief distribution chain. The former comprises upstream activities,

such as acquisition and transport of goods from suppliers to warehouses or distri-

bution centers. The latter is responsible for transporting and distributing goods

between distribution centers and organizations assisting the affected areas. A con-

ceptual framework of the humanitarian supply chain is depicted in Figure 2.1
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Figure 2.1: Humanitarian Supply Chain framework. Adapted from Habib et al.

(2016)

However important, HL still lags behind conventional logistics in terms of infrastruc-

ture, resources and recognition (Behl and Dutta 2018). This has led to the shortage

of qualified logistics professionals to act on humanitarian operations.

The first part of this research focuses on continuous aid work, more precisely on

the inventory management of perishable items in long-term humanitarian operations.

To this intent, we devise an inventory management model using a Markov Decision

Process which allows us to account for the perishability of goods in stock without

explicitly keeping track of its individual expiration dates. The experiment presented

demonstrates the model’s applicability in a blood bank inventory management.

Further, we extend the proposed model to include multiple suppliers and multi-

ple recipients of aid in the supply chain, focusing on the collaboration of multiple

organizations to optimise the distribution of relief supplies in a disaster response

operation. We propose a centralised inventory management where a distribution

center (DC) acquires and stores goods from multiple suppliers to later distribute
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them to different organizations serving the affected area, thereby linking the relief

supply chain with the relief distribution chain, see Figure 2.1.

2.1 Continuous aid operations

January 2013 marks the beginning of the humanitarian relief operations

for the civil unrest crisis in Syria, an operation that extends lasted al-

most 10 years. It registered over 10 million people in need of assistance

in the country and over 5.6 million refugees at the surrounding countries

(https://www.who.int/emergencies/situations/syria-crisis), with a death toll of ap-

proximately 60,000 people in 2013 only. The operation comprised assistance to

refugees and locals that are in dire need of food, hygiene and shelter, due disrup-

tions of basic services during the conflict (Fontainha et al. 2018).

To counter slow on-set disasters, such as the Syrian refugee crisis or famine oper-

ations in Sudan, continuous aid operations are required. Continuous aid operations

(or long-term humanitarian operations) can be defined as an ongoing process for

slow-onset disasters with a long-term need for supplies where organizations face rel-

atively long planning lead times (Apte 2009). These form an important part of the

operations of a humanitarian aid organization. Even though the logistics for medical

supplies or aid items in a continuous aid operation can be very similar to commercial

logistics, some circumstances can be very challenging, such as high and uncertain

demand, uncertain donations of supplies, poor infrastructure, insecurity due geopo-

litical or civil unrest in the region and lack of support from the local government

and/or communities (van der Laan et al. 2016).

Since the progress and impact of a slow-onset disaster generally depend on un-

predictable political and/or natural events, the demand for relief items can be highly

variable (Meraklı and Küçükyavuz 2019). Moreover, there are situations in which

the demand may suddenly increase or a disruption may lead to a shortage of supplies,

such as a new disaster in a region where aid organizations are already working, e.

g. an earthquake aftershock (Rottkemper et al. 2012), or the COVID-19 outbreak.

These situations add to the challenge of assessing the service needs of the affected

population. Additionally, the uncertainty in long-term humanitarian operations is
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constantly evolving since they are highly dependent on donations of goods such as

water, food and medical supplies, especially in times of economic instability (Mo-

han et al. 2013). Furthermore, although being recognised as a major part of relief

efforts around the globe, slow on-set disasters attract less attention from media and

donors than sudden on-set disasters, such as the Brumadinho dam disaster of 2019,

or Petrópolis’s landslides of 2022. Hence, they are constantly forgotten once the

media loses interest, and under-financed (Apte 2009, Van Wassenhove 2006).

As stated before, in locations affected by disasters one cannot anticipate the

demand’s intensity, nor its location nor its time of occurrence (Balcik and Beamon

2005). However, some long-term projects, such as counter-famine operations, pro-

vide opportunity for inventory management based on formal forecasting methods to

reduce stock-outs, over-stocking and shelf life expiration (van der Laan et al. 2016).

A sudden disaster’s response incurs immediate demand for critical supplies and war-

rants an urgent response and and agile supply chain focused on improved response

times (Apte 2009). On the other hand, long-term operations enable increased focus

on cost efficiencies, via improved resource utilisation and optimised inventory pol-

icy, while maintained the priority of serving as many affected individuals as possible

(Mattos 2018).

Some studies address the uncertainties in demand and supplies for continuous aid

in humanitarian operations. Rottkemper et al. (2011) proposed a distribution and

inventory relocation problem for a single product, that seeks to minimise the amount

of unsatisfied demand in overlapping disasters, whereby a sudden (and uncertain)

change in demand can happen due a second disaster where a humanitarian opera-

tion is already in place. They employ a linear multi-period model, assuming penalty

costs for unsatisfied demands to a case study of malaria vaccination in Burundi, in

2008, where a sudden change in demand could happen due to circumstances result-

ing from the civil war in the region. Rottkemper et al. (2012) developed a mixed

integer programming model to find an optimal integrated distribution and relocation

policy for supplies between depots, in regions affected by disasters, with uncertain

demands. Gonçalves et al. (2013) developed a two stage linear stochastic program

using a network flow model in order to minimise supply and distribution costs of

the World Food Programme (WFP) operations in Ethiopia, considering uncertainty
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in demand and roads accessibility and “last mile” difficulties, such as flooded areas

in rainy seasons. To minimise unused donation and promote an equitable service,

Balcik et al. (2014) used a set partitioning model to solve a multi-vehicle sequential

allocation problem and identify the optimal routes for vehicles to pick-up donations

from different sources and deliver them to non-profit organizations, such as food

banks. Assuming a stochastic demand that follows a Gamma distribution, they

argue that route decisions highly affect the degree to which the demand can be

matched. Orgut et al. (2016) presented mathematical models to ensure food bank’s

effective distribution of donated food among a population at risk of hunger, where

demand is proportional to the poverty of the population near the food bank area.

The paper uses a network-flow approach to minimise the amount of undistributed

food and uses probabilistic sensitive analysis to uncover the effect of uncertainties

on donations in the optimal solution. Orgut et al. (2017) continue their study of eq-

uitable distribution of food by developing a two-stage stochastic optimisation model

for equitable distribution of donated food by a regional food bank. The model seeks

a balance between the amount of distributed food and wastage of goods, assum-

ing that storage capacities at receiving warehouses are stochastic and follow a well

known distribution probability.

More recently, Dillon et al. (2017) presented a two-stage decision model for blood

bank inventory optimization, assuming stochastic demands and perishability. De-

spite also addressing blood bank inventory management, our approach distinguishes

from the presented one by providing a model suited for long term optimization,

whereas the presented one focus on two-stage optimization. Addressing vaccination

distribution with uncertain demand, Peng et al. (2019) introduces a network-based

model in a random-walk network assuming spatial constraints in order to devise an

optimal vaccination intervention plan. In a similar approach, Hota and Sundaram

(2019) seek to identify the optimal vaccination policies by applying game theory in a

population network, where nodes decide whether or not to vaccinate themselves. To

forecast demand in food bank operations, Pérez et al. (2022) analyse the donation

behaviour at two food banks affected a hurricane in order recommend forecasting

methods to tackle demand uncertainties. In a different approach, Lee et al. (2022)

also addresses forecasting of food bank donations uncertainty, by integrating Autore-
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gressive integrated moving average with neural network models. These approaches

are very different from our own, since they aim at identifying forecasting methods

and only apply to demand uncertainty.

Even though these works acknowledge stochastic demands and donations as key

factors in a humanitarian operation, very few works considers uncertainties in both

demand and donation/supply simultaneously. As also pointed out by the literature

review presented in Lopes et al. (2022), which only identified 1 paper that address

both demand and supply uncertainties at the same time: Ferreira et al. (2018),

which is the paper developed and published during this research and is part of this

work.

In fact, humanitarian organizations and academics have started to notice the

importance of supply chain management in humanitarian operations, in order to

better coordinate their efforts and minimise the waste of resources. However, sud-

den on-set disasters have gained more attention from the academia. According to

the literature review in humanitarian logistics and humanitarian operations made

by Leiras et al. (2014), only 15 out of the 227 papers reviewed considered slow on-set

disasters, such as famine and droughts; none of these papers address inventory man-

agement of perishable items. Hence, this research contributes to the literature with

an inventory model for slow on-set disasters that explicitly considers perishability

and accounts for uncertainties in both demand and donations of supplies.

2.2 Perishable items inventory management

Inventoried items can sometimes be subject to obsolescence, and/or deterioration.

Items are subjected to obsolescence when they lose value over time because of rapid

changes in technology or the introduction of a new product on the market. Deteri-

oration refers to loss due damage, spoilage and vaporisation (Goyal and Giri 2001).

Items that have a maximum usable lifetime, such as meat, vegetables, bread, human

blood, flowers, among others, are classified as perishable.

There are four major research areas in the literature of perishable inventory

management: ordering policies, issuing policies, disposal policies and pricing policies.

Ordering and issuing policies have attracted most attention in the literature, as
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detailed below. An ordering policy defines when to order a policy and how much of

it to acquire. The issuing policy determines how to remove items from inventory. As

such, it directly affects the age of inventory items. Consequently, models for issuing

policies need to consider both shortages and losses due to perishability (Lee et al.

2014).

Naturally, models for deteriorating items must deal with two key factors: demand

and deterioration rate. Demand often drives the entire inventory system, whereas

the deterioration rate helps to characterise the inventoried goods and determine

their expiration date. Price discount, shortage and the temporal value of the money

are also important factors to be considered in perishable items inventory Li et al.

(2010).

One can model demand either as deterministic or stochastic, with the former

being more common in the literature, whereas the latter tends to be more common

in practice. Chang et al. (2003) proposed a model to find the optimal replenish-

ment policy with time dependent demand and constant deterioration rate, allowing

shortages and backlogging. A deterministic demand model, proposed by Yang and

Wee (2003), strives to find production and pricing policies for deteriorating items

with price dependent demand, with a view at maximising the present value of prof-

its over a finite time horizon. In a slightly different approach, Wu et al. (2006)

developed a model for finding the best ordering policy for deteriorating items with

stock-dependent demand, allowing shortages and with a backlogging rate depending

on the waiting time for the next order.

Stochastic demand models typically model the demand as a Poisson process. For

instance, Kalpakam and Shanthi (2001) studied an (S − 1, S) perishable inventory

system under Poisson demand and exponential lifetimes, seeking to minimise the

long run expected cost by means of a Markov Renewal Process. Ozbay and Ozgu-

ven (2007) developed an inventory management model to identify the safety stock of

goods in order to prevent disruptions in the flow of goods (of a single commodity) to

shelters, during and after a sudden on-set disaster, at minimum cost, for a finite time

interval. Their model is based on the Hungarian Inventory Control Model, and pro-

poses a solution using the p-Level Efficient Points algorithm for the time-dependent

stochastic model. The model accounts for continuous delivery and consumption of
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goods, assuming both as stochastic processes. Even though their research does not

explicitly contemplate perishability, they highlight the importance of assuring that

costly supplies do not perish in stock. Ozguven and Ozbay (2013) further develop

this model by assuming multi-commodity and multi-supplier stochastic inventory

control. The model is then considered a part of a Radio Frequency Identification

(RFID)-based emergency management framework, which aims to facilitate resource

tracking during disaster response. They argue that their model could (indirectly)

accommodate obsolescence by assuming higher costs due stocking requirements and

higher shortage possibilities.

Sivakumar (2009) studied a continuous review inventory system with a (s, S)

operating policy where demands occurring during stock-outs enter into orbit and

return after a random time; they considered an exponentially distributed demand

and an inventory dependent deterioration rate. Yadavalli et al. (2011) presented a

multi-server facility model in which the item is delivered to the customer only after

performing some service, assuming a Markovian customer arrival process (MAP),

(s, S) ordering policy and exponentially distributed lead times. Alizadeh et al. (2014)

implemented a modified (S − 1, S) inventory policy for decaying liquids, such as

Alcohol and Hydrogen Peroxide, with Poisson demand an infinite time horizon and

deterministic deterioration rate, allowing shortage and backlog. Gutierrez-Alcoba

et al. (2017) developed two heuristic algorithms (based on the Silver’s heuristic)

for the lot-sizing problem of perishable products, with non-stationary stochastic

demand and deterministic deterioration rates in a finite time horizon.

Finally, Rezaei-Malek et al. (2016) developed a bi-objective mixed-integer pro-

gramming model for perishable items (medical supplies). They seek the best order-

ing policy, as well as the optimal location-allocation plan for medical warehouses

in a pre-disaster phase and the optimal distribution plan of medical supplies to the

hospitals in a post-disaster phase, to seek a balance between the average response

time and the operation’s total cost. Their model assumes constant deterioration

rate and uncertain demand based on the probabilities of possible disaster scenarios.

When it comes to deterioration rates, different approaches arise in the literature.

Mahapatra and Maiti (2005) developed single-objective and multi-objective models

for profit maximisation considering stochastically deteriorating items and inventory
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dependent demand with no shortage allowed. The deterioration function follows a

two-parameter Weibull distribution in time. Dye (2006) developed a deterministic

inventory model to find the optimal selling price and ordering policy for an inventory

system with time dependent demand and backlog, and deterioration dependent on

both price and time. The model presented by Sarkar and Sarkar (2013) considers

an inventory dependent demand and a time varying deterioration rate to determine

the optimal cycle length of an item in the inventory. Gunpinar and Centeno (2015)

seek the the optimal ordering level for blood packs, considering a balance between

shortage and wastage of blood products at a hospital. They presented deterministic

(assuming a known demand) and stochastic integer programming models (assuming

an uncertain demand), considering a deterministic shelf life for red blood cells and

platelets. Their model, which is myopic in that it considers a finite planning hori-

zon, needs to keep track of the age of all items in stock. Moreover, the stochastic

component of the model relies on the quality of a finite number of available scenar-

ios. Muriana (2016) presents a stochastic Economic Order Quantity (EOQ) model

for inventory management of food products that seeks the optimal inventory policy

under Gaussian demand, constant lead time and deterministic shelf life.

Uncertainty in inventory management is often modelled by means of stochastic

programming techniques, considering a finite time horizon T . Such models, however,

require linear objective functions. Moreover, the complexity has a combinatorial

growth with the time horizon T , rendering the problem rather intractable for large

values of T , as the scenarios become increasingly complex and unlikely. As a way

to circumvent these issues, we use Markov decision processes (MDP). Due to its

state space modelling that relies one-step transitions, MDP allow us to seamlessly

account for uncertainties in any number of variables. In addition, the framework is

flexible in that it does not impose constraints on the form of the objective function.

Furthermore, MDP are especially appealing for modelling problems with infinite

time horizon (T → ∞) like those ensuing from long-term operations, as the solution

is evaluated by a simple, easy to implement, recursive algorithm (Putterman 1994).

Finally, MDP are also a solid approach for short-term operations of random duration

such as the landslide relief operations considering in the second part of this work,

hence they will be applied in both frameworks.
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An important contribution of the first model is that deterioration is considered

upon the arrival of each donated item/batch of items. The probability that the

new item is incorporated to the inventory coincides with the probability that the

item will be consumed before its expiration date. That prevents the need to keep

track of the expiration dates of every item in stock, while still considering the pos-

sibility of expiration, thereby yielding simple inventory policies as illustrated by the

examples in section 3.9. The model also considers the possibility of increased dona-

tions/acquisitions, resulting from an investment in the part of the decision maker.

Such increases may be the result of inventory transfers, advertisement campaigns,

direct investments, etc.

The proposed MDP model provides an adequate approach for addressing un-

certainty, allowing us to derive a long-term optimisation problem that implicitly

addresses every possible scenario regarding the stochastic components, as the so-

lution is calculated in terms of steady state behaviour. That contrasts with the

typical approach of using finite-horizon models that account only for the uncertain-

ties present in the generated scenarios, and whose solutions depend upon the quality

of the finite number of generated scenarios.

This research builds a foundation for further studies in the area of inventory

management for long-term humanitarian operations, considering perishable items.

That is because we focus on the real necessity of the humanitarian organizations on

the field, since donated goods do not have infinite shelf life and, consequently, need

to be properly managed. It is clear that despite the growing interest in stochastic

deterioration rates in the last decade, the majority of studies developed in inventory

management of perishable items focus on deterministic shelf lives. Moreover, the

stochastic component is often treated by means of scenario generation for finite

planning periods.

To sum up, our work strives to bridge the gap on long-term humanitarian opera-

tions reported by Leiras et al. (2014), aiming to minimise the impact of disasters over

a vulnerable community in long-term operations, such as plagues, where perishable

items, such as vaccines and food are vital to assist people in need. Simultaneously,

we aim to develop an inventory management model which addresses perishability,

enabling humanitarian operations to minimise their operational costs with a model
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that is easy to deploy and contemplates stochastic demand and stochastic donation.

2.3 Collaboration in humanitarian supply chains

Disaster responses often involve a large number of organizations, each with its own

proceedings and organizational culture (Gustavsson 2003). Therefore, a quick, or-

ganised response requires a well-coordinated effort (Dubey and Altay 2018). The

lack of coordination may hinder operations and produce mismatching information

(Kovács and Spens 2007). It is noteworthy that HO frequently use the terms col-

laboration and coordination interchangeably (Balcik et al. 2010).

According to Gupta et al. (2017), 40% of humanitarian operations’ logistics re-

sources are wasted due to lack of coordination. Not only does it deny the necessary

goods to the victims, but also imposes financial losses and environmental challenges

related to disposing of the unused goods (Li et al. 2019). Furthermore, duplicated

efforts can compromise the use of scarce resources (Mishra et al. 2020). Unsur-

prisingly, researches suggests that collaboration may lead to substantially improved

humanitarian operations (Papadopoulos et al. 2017, Thomas and Kopczak 2005).

Balcik et al. (2010) define coordination as the relationships and interactions

among different actors operating within the relief environment. These interactions

can be categorised into two broad lines: vertical coordination and horizontal coor-

dination. Whilst vertical coordination involves upstream and downstream activities

in the supply chain, horizontal coordination is the collaboration of organizations in

the same level within the supply chain.

Although collaboration mechanisms are often beneficial, there are many obstacles

to their effective use: conflicting goals and organizational cultures, competitiveness

among actors, technology barriers, unwillingness to share information, among others

(Nurmala et al. 2017). The urgency of the relief also imposes swift time constraints

for establishing and coordinating relationships (Krejci 2015). To overcome such

challenges, Dubey and Altay (2018) identify 11 drivers for humanitarian operation

coordination: Information and communication technologies, Information sharing,

Visibility, Training, Mutual learning, Contingency leadership, Performance manage-

ment systems, Swift-trust, Commitment, Cultural cohesion and Regular meetings.
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Studies on coordination for humanitarian operations either focus on specific

drivers or attempt to model the decision maker’s behaviour (Dubey and Altay 2018).

Analysing the trade-offs between different types of coordination, Jahre and Jensen

(2010) conceptualise the cluster approach for a coordinated disaster response. For

a discussion of the applicability of the cluster system in urban disaster relief oper-

ations, refer to (Sanderson 2019). Recently, authors used fuzzy analytic hierarchy

processes to classify barriers to coordination (Kabra et al. 2015) and introduced the

concepts of network orchestration and choreography for relief supply chains (Grange

et al. 2020).

Studies applied simulation (Krejci 2015) and evolutionary game models (Li et al.

2019) to evaluate whether collaboration can improve the efficiency of disaster relief

management, considering the expected behaviour of decision makers. Alternatively,

one can design contractual strategies with purchase and surplus constraints to bal-

ance shortages and inventory losses (Nikkhoo et al. 2018). Finally, Li et al. (2018)

propose a maximal covering model with coordination to seek optimal location deci-

sions for distribution centers under uncertainty and operational constraints.

Our study covers two coordination drivers proposed by Dubey and Altay (2018):

Information sharing, and Visibility. The former helps increase the accuracy of the

information reaching multiple organizations, especially concerning supply and de-

mand. The latter enables partners to coordinate better, as each can see the needs

and replenished quantities of all partners. This improves transparency and leads to

a more reliable decision making process.

2.4 Relief distribution

Our study advocates the need for collaboration between multiple organizations to

optimise the distribution of relief supplies in a disaster response operation. Behl and

Dutta (2018) report that, from 2011 to 2017, only 13% of the humanitarian logistics

and supply chain papers studied coordination and collaboration. In contrast, coor-

dination and collaboration are at the top of the practitioner’s priorities (Besiou and

van Wassenhove 2020). The second model developed in this research addresses this

mismatch by proposing a collaboration framework wherein multiple organizations
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share the same suppliers and transport network. The approach centralises purchas-

ing, warehousing and distribution decisions within a distribution center (DC). The

DC acquires and stores goods from multiple suppliers to later distribute them to dif-

ferent organizations serving the affected area, thereby linking the relief supply chain

with the relief distribution chain, see Figure 2.1. This reduces inventory manage-

ment and distribution costs and promotes a better usage of the available resources

to improve the assistance to the victims. Further, the collaboration mechanism

prevents (or at least, reduces) the competition among organizations with similar ob-

jectives over the same scarce resources, which would have the potential to increase

prices due to limited capacity and high demand. In this study, we focus on the

evaluation of the benefit of this approach using a mathematical model.

After the COVID-19 pandemic highlighted the perils of maintaining a super lean

supply chain, there is growing concern among practitioners regarding the inventory

of vital supplies in humanitarian responses, such as drugs and medical equipment

(Mishra et al. 2020) as well as relief food items (Perdana et al. 2022). This research

addresses the balance between avoiding shortages and maintaining appropriate in-

ventory levels by including shortage and penalty costs, as well as inventory holding

costs. We seek an operational policy that avoids overstocking and wasting resources

whilst maintaining enough inventory to minimise shortages due to peak demand.

By including a local supplier, the proposed approach also tackles another rising

concern among practitioners: the need to rehabilitate and develop the local economy

after a disaster (Heaslip et al. 2018). To hedge against local supply chain disruptions,

the model also includes a reliable supplier outside the disaster area to ensure that

HOs can properly assist the disaster victims even when local supply is unavailable.

Whilst the model includes a single reliable supplier matched by a single unreliable

counterpart, it is easily adaptable to multiple suppliers (both reliable and unreliable).

To tackle supplier unreliability, Iakovou et al. (2014) propose a model that in-

cludes a second supplier which is contractually remunerated to keep a reserved

amount of goods in stock, to be used whenever the main supplier is unavailable.

But while they assume a two-tier network design and contractual obligations with

suppliers, our framework considers a three-tier supply chain network with centralised

decisions at the DC. Furthermore, our framework does not imply any contractual
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obligation and allows the decision maker to freely choose among suppliers based on

the conditions at each decision epoch. As the model is stochastic, it considers failed

deliveries by the supplier.

Other studies that consider supply chain disruptions mostly focus on facility lo-

cations, often considering that possible facilities, such as distribution centers and

shelters, may be disrupted by the disaster (Hamdan and Diabat 2020, Mohammadi

et al. 2020, Rahmani et al. 2018). These studies consider that the disrupted lo-

cations are completely inoperative due to damaged infrastructure or compromised

accessibility. Our framework is more general as it considers that disruptions do

not necessarily render the unreliable supplier completely inoperative. Rather, they

merely cause the supplier to miss specific delivery deadlines with a given proba-

bility. Moreover, whilst two-tier networks are relatively common in the literature,

three-echelon networks, while existent, are hardly deployed, as mentioned in (Balcik

et al. 2016, Behl and Dutta 2018). The present study shortens this gap by proposing

a three-tier network that models the flow of supplies from their source (suppliers)

to their final destination (humanitarian organizations/victims), also including the

distribution center.

To model uncertainty within HL, one can use Markov decision processes. Ferreira

et al. (2018) used MDPs to derive optimal inventory policies for perishable items in

slow-onset disasters, whereas Meraklı and Küçükyavuz (2019) used a value at-risk

MDP formulation to tackle a similar problem under parameter uncertainty. The

models, however, do not include distribution decisions as these would enlarge the

state and action spaces and render the approach intractable for moderately com-

plex distribution networks (e.g., Powell 2011). To include distribution decisions,

researchers often resource to two-stage stochastic programming (TSSP) (Alem et al.

2016, Noyan et al. 2019) or robust programming (Hamdan and Diabat 2020, Rah-

mani et al. 2018, Rezaei-Malek et al. 2016). These models, however, present a

combinatorial growth with the time horizon, which renders them impractical for

longer-term problems such as slow-onset disasters. Furthermore, as the time hori-

zon grows, the scenarios become increasingly unlikely and hardly representative (e.g.,

Snyder 2006).

Fuzzy sets can also be utilised to tackle uncertainty. Kabra et al. (2015) use a
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fuzzy analytic hierarchy process to prioritise barriers for coordination in humanitar-

ian supply chains based on their perceived severity. Representing the demand by

a fuzzy parameter, Goli and Malmir (2019) introduce a new version of the Vehicle

Routing Problem (VRP) that uses the covering tour approach to distribute essential

goods. With a similar goal, Mohammadi et al. (2020) combine fuzzy logic and ro-

bust optimisation to route vehicles and distribute products in a multi-echelon relief

distribution network.

Another approach to address uncertainty is to use simulation to test a limited

number of possible solutions. For instance, Beamon and Kotleba (2006) simulate

complex emergencies in South Sudan and study the interrelationships among pa-

rameters in the relief chain design, such as reorder, lot size and distribution costs.

Similarly, McCoy and Brandeau (2011) simulate the interactions between a central

warehouse and the downstream operations, and test distinct distribution and bud-

get allocation decisions. Krejci (2015) studies decision maker’s behaviours to find

the influence of collaboration mechanisms in the operation. Using COVID-19 as

a background, Malmir and Zobel (2021) propose a simulation-based approach to

generate problems of different sizes with uncertain demand whilst considering de-

privation and equity costs in humanitarian operations. Although simulation allows

us to propagate uncertainties and compare a limited number of prescribed policies,

it does not allow optimisation.

As MDPs are specially suited to long-term operations (Putterman 1994) and

TSSP can effectively prescribe a shorter term distribution policy, this thesis proposes

a novel framework that combines these approaches to effectively solve problems that

involve both a longer-term strategic/tactical decision and short-term operational

decisions. For example, government agencies responsible for disaster management

typically need to set an annual budget for their inventory planning and make an

operational decision to distribute the inventory to demand points whenever a disaster

strikes. Another example is when a large-scale disaster strikes and the government

agency knows that the response operation will take a long time, they will need to

plan the inventory for the length of the operation and make short-term decisions to

distribute the relief items to the victims on a regular basis (e.g. daily). To address

the need for longer-term decision, we use an infinite horizon MDP formulation to
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derive the optimum purchasing strategy; short and medium-term operations can also

be covered via the discounted cost MDP formulation that also considers the random

duration of the response. We then use a TSSP optimisation model to break down

the MDP’s optimum purchasing strategy (how much to buy) into acquisition (where

to buy) and distribution (where to send) policies for suppliers and organizations.

The proposed approach ensures a simple and easy to solve MDP that prescribes

the number of items to purchase given the current inventory level at the DC at the

start of the planning horizon (e.g. the start of the budget year, the start of a response

operation). Considering the initial inventory at the DC and the number of items to

be acquired, the stochastic programming (TSSP) formulation refines the purchasing

decisions at each time epoch by assigning quantities to suppliers and establishes the

distribution strategy under uncertainty. As it only encompasses the uncertainties of

the current decision epoch, the TSSP is also simple and easy to solve. Therefore,

the proposed framework takes advantages of the strengths of the MDP and TSSP

formulations to derive a fast and reliable algorithm for inventory management and

distribution. Our approach also addresses a real problem faced by city or state

agencies who need to set a longer-term budgeting decision and short-term decisions

to respond to disasters. To the best of our knowledge, this is the first approach that

combines MDP and TSSP to tackle a combined long-term inventory management

problem and short-term procurement/distribution problems with multiple suppliers

and recipients within a three echelon supply network.
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Chapter 3

Inventory management of perishable

humanitarian supplies

The reality of humanitarian operations is very different from that of most of

the theoretical studies in the literature. Demand is uncertain and highly unstable,

as it happens suddenly in different places at different points in time (Kovács and

Spens 2009). Moreover, donations are often unpredictable since they come from

different kinds of donors, such as non-governmental agencies, governmental agencies

(for instance the military forces), commercial partners, individuals and local retailers

(Kovács and Spens 2007). They arrive at the disaster site in different amounts and

in a variety of shapes and packs.

Frequently, humanitarian organizations receive unsolicited and even useless

goods while responding to a disaster, such as expired medicines and food or dirty

laundry, which may render the management of donations very problematic. The

proper management of the received and procured goods is essential to the success of

any long-term humanitarian operation (Holguín-Veras et al. 2014). That includes

the proper management of perishable items that arrive on site such as food, human

blood and medicines, once they can even harm individuals if not managed and stored

properly. Furthermore, spoiled goods generate disposal costs, and therefore increase

the total operation costs of the organizations.

This chapter aims to build a model to find the optimal ordering policy for per-

ishable items within a continuous aid humanitarian operation, considering uncertain

(stochastic) demands and donations and deterministic shelf life. The objective func-
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tion is to minimise the total expected inventory cost, seeking to avoid both shortages

and the deterioration of donated supplies.

The proposed problem is modelled as a Markov Decision Process (MDP), where

both the demand and supply are stochastic variables. An MDP is a framework

to model sequential decision problems (Putterman 1994), wherein it is possible to

intervene in the system at each period (decision epoch) via control actions, and

the transition between system’s states is probabilistic and depends on the selected

control actions. Every action has an immediate cost (or reward) associated to it,

which also depends on the system’s state upon the application of such an action.

They are called Decision Processes, because they model the possibility of an agent

to interfere regularly in the system, and Markovian because they obey the Markov

property, according to which the effect of an action on a state depends both on the

action and on the current state of the system.

An MDP is a tuple (S,A, T,R) comprising:

• S – Set of all possible system states;

• A – Set of feasible control actions;

• T : S ×A× S → [0, 1] = Probability function of a system to switch to a state

s′ ∈ S given the process is at state s ∈ S and the agent action a ∈ A;

• R : S × A → R - Cost (or reward) function for taking a decision a ∈ A when

the process is at a state s ∈ S.

3.1 Model characteristics and assumptions

1. The states of the system are the available inventory at the onset of each week.

More specifically, they represent the number of items in stock which are not

expected to expire before they are demanded.

Once the model proposed is an inventory management model for perishable

items, this is the most suitable choice for the states of the system. These are

the base parameters upon which the manager will decide over how many items

should be collected/procured in order minimise the average costs of the system

(inventory, deficit and disposal costs);
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2. Procurement of items is performed at the beginning of each week, based on

the inventory level available. The number of items procured depends on the

possible actions selected by the decision maker. The set of actions (items

procured) for each possible state of the system (inventory level available),

which minimises the objective function, is called optimal procurement policy;

3. The model is built upon the assumption that the warehouses used to store the

procured/collected items are large enough to store the demanded goods over

the decision epoch considered (see section 3.4). Hence, the inventory capacity

is assumed to be infinite.

For our experiment (discussed in section 3.9), the warehouse has enough capac-

ity to store all donations and items procured in a month. Since we are working

in a weekly basis management system (see section 3.4), the inventory capacity

is not a constraint. However, for operations with limited storage capacity, we

recommend assuming a shorter interval between decisions (daily procurement,

for example) in order to fit the warehouse capacity, or considering a different

model with inventory capacity constraint.

In the second framework presented in this research, we generalise our model in

order to assume inventory capacity constraints in different levels of the supply

chain;

4. Donations are stochastic and follow a determined probabilistic distribution

with known parameters;

5. Items collected or procured in a single week are considered to have the same

expiration dates and are arranged in a batch of items as soon as they arrive

in the warehouse. Hence, the remaining shelf life of all items in one batch is

the same;

6. The demand for is stochastic and follows a Poisson distribution with mean λ.

Hence, the time to consume a fixed number of items k in the inventory is given

by an Erlang distribution with mean λ;

7. The probability of expiration of a batch of items is given by an Erlang distri-

bution with parameters λ and k, where k is the number of items in stock that
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are not expected to expire, at the beginning of the week. More specifically,

the batch will expire if the items already in stock, which are older, are not

consumed before their expiration dates.

The rationale behind the modelling choice in 7 is as follows. Once a batch of

items arrives, we evaluate the probability of expiration for the whole batch.

This probability coincides with the probability that all older items are con-

sumed before their expiration date. The items then enter the stock with this

probability and do not enter it otherwise. Hence, the state variable keeps count

only of the number of items in stock that will not expire. This circumvents

the need to monitor the age of all items in stock, while still accounting for the

expiration of the items, and is one of the innovations of the model.

Under such a modelling choice, the items received in past decision epochs

were accepted based on their expiration probabilities, hence they are consid-

ered appropriate for consumption in the current decision epoch. The items

received/acquired currently, however, may expire. And the probability that

they are accepted in the stock is the probability that they will not deteriorate

before being demanded;

8. The expiration date is deterministic, i.e. the collected, procured and received

items have a fixed shelf life. The model considers the shelf life of an item as

the difference between the expiration date and the time of arrival of the item

in the warehouse;

9. No lead-time is considered for donated or procured supplies.

3.2 Model parameters and definitions

Sets S System states, representing the inventory level (measured in units of products)

A Set of action rules A = {a1, a2, . . . , an}

Random variables C Donations of items with realization c ∈ C (measured in units)

D Demand of items with realization d ∈ D (measured in units)

V Number of items that can be consumed before expiring (measured in units)

Parameters ∆S Variation in the inventory level (measured in units)

pa Number of procured items given an action a

E Expiration date of the product

Cost function R(s, a) Cost of holding s items in inventory under action a
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3.3 Objective function

The objective of this model is to minimise the long-term operational cost (which

is composed of inventory holding, ordering and disposal costs) in a continuous-aid

humanitarian operation that stores and distributes perishable items.

For that purpose, we adopted an average cost performance criterion for our

model. Let Π : S → A be the set of possible stationary policies; each policy π ∈ Π

determines, for each state s ∈ S, which action should be performed each time the

system visits state s. Let R : S × A → (0,∞) be the cost function of the system,

where R(s, a) is the cost of applying action a at state s. Each policy π ∈ Π is

associated to a long-term average cost

ηπ = lim
T→∞

1

T
E

{
T∑
t=0

R(Xt, π(Xt))

}
, (3.1)

The objective is to find an optimal policy π∗ ∈ Π such that:

ηπ∗ ≤ ηπ, ∀π ∈ Π. (3.2)

3.4 Decision epoch

The decision on the collection of items takes place weekly, before the start of a new

week, as long as the humanitarian aid operation lasts. Considering that continuous

aid operations are often long-term operations, the model considers an infinite time

horizon.

3.5 State of the system

The system states represent the available inventory level, and can be represented

by units of product (blood packs, vaccine doses, etc.). Therefore, the state space is

discrete and denoted by S = {0, 1, ...,M}, where 0, 1, ...,M are possible inventory

levels at any decision epoch.
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3.6 State transitions and probability

The events that cause transitions between states are:

• Demand for products, that follows a Poisson process with mean λ;

• Donations of products, which follows a discrete probabilistic distribution with

mean µ;

• Expiration of products, that follows an Erlang distribution with probability

density function f(x, k, λ), where x is the elapsed time for k items to be con-

sumed in a Poisson process with mean λ.

As explained in Section 3.1, for each batch of donated products we will consider

the probability that these items will not perish before consumption, which will be

calculated according to the Erlang distribution above, where k is the amount of

items in stock after the arrival of the donated batch, assuming the current inventory

level.

Thus, the inventory level variation, ∆S, considering demand and donation of

goods, is given by the following equation:

∆S = s′t+1 − st, (3.3)

where s′t+1 is the inventory level available at the beginning period (t+ 1), and st is

the inventory level at the beginning of period t.

Assume that donations are independent of the demand. Then, if we do not

consider deterioration, the probability of going from state s to state s′ in the next

period becomes

P
′
(s

′ |s = ∆S) =
∑

(P (C = c) ∗ P (D = d), ∀c ∈ C, ∀d ∈ D|c− d = ∆S. (3.4)

Assume now that the probability P (V = k|s) represents the probability of k

newly arriving items being consumed before expiring, given the inventory level s.

As stated above, this probability is evaluated making use of the Erlang distribution.
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The transition probability P (s′|s) considering the perishability of the items can now

be expressed as follows:

P (s′|s = ∆S) =



P ′(s′|s = ∆S) ∗ P (V = s+max(∆S)|s), if∆S > 0

max(∆S)∑
∆S=1

P ′(s′|s = ∆S) ∗ [1− P (V = s+max(∆S)|s)] + P ′(s′|s = 0),

if∆S = 0.

(3.5)

It is easy to see that if ∆S < 0 , then P (s′|s) = P ′(s′|s).

Let us now assume that the decision maker is able to increase the donations by taking a given

action a, which results in extra pa donated items. Typically, pa is a random variable, and we

assume in our model that this is a discrete variable with known distribution. Then, the variation

in the inventory level, ∆Sa, considering a realization of pa extra donations is given by the following

equation:

∆Sa = s′t+1 − (st + pa) (3.6)

Hence, the transition probability P (s′|s, a) accounting for the action of collecting or procuring

pa extra items in a day, becomes:

P (s′|s, a = ∆Sa) =



P ′(s′|s = ∆Sa) ∗ P (V = s+max(∆Sa)|s), if ∆Sa > 0

max(∆Sa)∑
∆Sa=1

P ′(s′|s = ∆Sa) ∗ [1− P (V = s+max(∆Sa)|s)]

+P ′(s′|s = 0), if ∆Sa = 0.

(3.7)

Note that for ∆Sa < 0, P (s′|s, a) = P ′(s′|s).

3.7 Cost function

The goal of any inventory system, in continuous aid work, is to minimise the costs of procurement,

inventory holding and transportation of goods for those in need. When it comes to perishable items,

perishability costs also need to be accounted, such as the disposal cost of deteriorated items.

However, each organization has its own cost evaluation based on its particular operations,

especially considering perishable items, where medical supplies and nutrition supplies, for example,

have very different disposal policies. Hence we will not establish a unique cost function for this

model, being up to each organization to choose the cost function that best suits its needs.

Furthermore, although our analysis is done regarding financial costs, the model is general

enough and has no constraints regarding the cost function structure. Hence, the “cost” function
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may represent costs in distinct dimensions, other than the financial one. The cost function may

be modelled regarding carbon footprints or even social costs, for example.

3.8 Solution procedure

Our model seeks to find an optimal policy for procurement of items that minimises the total

inventory costs of humanitarian aid organizations in long-term operations. In order to solve the

problem with infinite horizon we used the Value Iteration Algorithm (Putterman 1994). For details

on the Value Iteration Algorithm, please refer to (Putterman 1994).

3.9 Experimentation

The Value Iteration algorithm proposed in this model was programmed and solved using the C#

programming language, running in a Microsoft Windows 10 (64 bits) environment, with 8 GB

RAM and an Intel Core i7 2860QM CPU (8 CPUs) with approximately 2,5 GHz.

The C# language was chosen merely by convenience and availability, due the experience of the

authors with the language. Although C# is a proprietary language, the model can be implemented

with any programming language, such as Python or C++. Furthermore, the Value Iteration Algo-

rithm is a well know algorithm that can be easily implemented by any employee with programming

skills inside an organization, using free programming languages.

At this point, it is important to remember that our model assumes an infinite time horizon.

Hence it only requires one execution during the lifetime of the humanitarian operation, in the initial

stage of the operation, as soon as the parameters of the distributions of donations and demand of

goods are known. The output is an optimal stationary policy that prescribes an optimal action

for each state, regardless of the decision epoch (Putterman 1994). Should the parameters, such as

shelf life, demand or donation distributions, suffer any change during the operation, another run

is required to reflect such changes, thus resulting in a new, updated stationary policy.

Moreover, given that the model will be run only sporadically - at the onset of operations

and whenever the input parameters suffer significant variations - the performance of the program-

ming language selected to develop the model has only a marginal importance, since it will not be

necessary to run the model too often.

3.9.1 Experiment Design

In order to demonstrate the applicability of our model, we designed a small experiment considering

the inventory management of a blood center, responsible for collecting and distributing blood packs

for city hospitals and humanitarian operations.

The data regarding demand and donations of blood packs were generated randomly, assuming

demand for blood packs larger than donations. In addition to demand and donation, deterioration
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of the blood packs are the events that can cause an alteration in the inventory level, leading to

a transition between the states of the system. The states considered in this experiment are the

number blood packs available in the inventory, ranging from 0 to 2000 packs.

The demand for blood packs fits a Poisson distribution with mean 90 packs a week. The

donation of blood is also stochastic and follows a Poisson distribution with mean 60 packs a week.

If necessary the blood center can send vehicles to distant districts in order to motivate donations,

and increase the number of blood packs donated/collected, to match the demand. There are four

vehicles available in the blood center for blood packs pick-ups. We assume that each vehicle can

collect up to 20 blood packs a week, when triggered. Hence, we consider a set of five possible

control actions: to send zero, one, two, three or four vehicles for pick-ups, collecting at rate of 0,

20, 40, 60 and 80 blood packs, respectively. Therefore, the set A = {0, 20, 40, 60, 80} is the set of

control actions available for this experiment.

3.9.2 Immediate Cost function

The cost parameters for this experiment are well known: The inventory holding cost (h), the trans-

portation costs for each vehicle used for blood packs pick-ups (ta), disposal costs for deteriorated

items (dc), the total expected disposal cost (E(dc)), shortage costs for each blood pack (sc), and

the total expected shortage cost (E(sc)).

The inventory holding cost increases linearly with the number of packs in the inventory, while

the transportation/pick-up costs vary according to the number of vehicles used. Furthermore,

there is a small financial incentive for each vehicle used for pick-ups. Each vehicle used grants a

small reward of $60,00 from governmental organizations, in order to stimulate blood donations.

The cost of sending no vehicle is the opportunity cost of not receiving the government incentive.

The total expected disposal cost is calculated considering the expected number of blood packs

that will deteriorate before consumption, based on the available inventory level at each decision

epoch, as equation (3.8) shows:

E(dc|s, a) = [1− P (V = s+max(∆Sa)|s, a)] ∗max(∆Sa) ∗ dc (3.8)

where 1 − P (V = i|s, a) is the probability that i blood packs deteriorate before consumed, given

the current inventory level s and dc is the disposal cost per pack.

Moreover, the expected shortage cost is calculated considering the expected lack of blood packs,

based on the available inventory levels. Since we are working with inventory management for a

blood center, it is highly recommended that the inventory level never reach zero, in order to avoid

shortage. Thus, for each demand not met, a high penalty (sc) is applied over the blood center

costs, as shown in table 3.1

The total expected shortage cost is calculated as shown below.
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E(SC|s, a) =
−1∗min(∆Sa)∑

i=1

P (L = i|s, a) ∗ i ∗ sc, (3.9)

whereP (L = i, s) is the probability of a shortage of i blood packs, given the current inventory level

s, and sc is the shortage cost per pack. Therefore, the cost function R(s,a) for this experiment is

given by

R(s, a) = h ∗ s+ ta + E(dc|s, a) + E(SC|s, a). (3.10)

Table 3.1 summarises the cost structure of this experiment, and presents the values used for

each parameter. It is important to highlight that the costs used in this experiment were generated

using arbitrary values.

Table 3.1: Experiment costs
Variable transportation / pick-up costs (ta) Cost

One vehicle $ 120,00 / vehicle

Two vehicles $ 85,00 / vehicle

Three vehicles $ 75,00 / vehicle

Four vehicles $ 70,00 / vehicle

Inventory holding cost (h) $ 1,00 / pack

Disposal cost (p) $ 1000,00 / pack

Shortage cost (sc) $ 1000,00 / pack

3.9.3 Deterioration rates

Blood packs become deteriorated 42 days after being collected, thus their shelf life is deterministic.

Usually the blood packs are ready to use right after they become available. However, since we are

dealing with continuous aid work, and these operations often happen in underdeveloped countries

whose structure does not always allow local collection, the blood packs may come from different

places around the world, directly affecting their shelf life. In order to address this issue, we

simulated four different scenarios considering different lead times and how these lead times affect

the shelf life of blood packs. For each scenario, the demand, donation and cost parameters are

maintained constant.

In the first scenario, we considered a local collection where the shelf life of a blood pack is

42 days. For the subsequent scenarios we considered lead times of 21 days, 28 days and 35 days,

leading to 21 days, 14 says and 7 days of shelf life for blood packs, respectively. At this point, it

is important to note that blood packs have a very specific supply chain management, often called

cold chain or cold supply chain, which is not addressed in this work. Also, the lead times are used

only to demonstrate how the ordering policies change with different deterioration rates or different

shelf lives. Thus, they are not directly considered in the transitions of inventory levels, leading to

a model with no lead time.
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3.9.4 Results and discussion

After the evaluation of the model we managed to find the optimal ordering policies for the four

scenarios described in the previous section. Figure 3.1 and Table 3.2 summarise the results.

The outputs of our model are the actions that must be executed at each decision epoch, as

a function of the inventory level at the onset of the current decision epoch. More precisely, each

action represents a different number of blood packs that must be collected, at the beginning of

each week, given the number of blood packs in stock in the beginning of the week.

For each possible inventory level of blood packs available in stock, our model provides the

decision maker with the number of blood packs that must be collected, in order to minimise the

average inventory costs of the humanitarian operation. The set of all optimal actions, one for each

inventory level, is the optimal collecting (ordering) policy for the operation.

Considering the set of 5 possible actions proposed in our experimentation, the optimal ordering

policy provided by our model for the first scenario (a shelf life of 42 days, proposed in section 3.9.3),

is as follows: for an inventory level smaller than or equal to 340 blood packs, 4 vehicles should be

sent in order to collect an average of 80 extra blood packs. For an inventory level between 341

and 364 blood packs, 3 vehicles should be sent in order to collect 60 extra blood packs. For an

inventory level between 365 and 390 blood packs, 2 vehicles should be sent in order to collect 40

extra blood packs. For an inventory level between 391 and 428 blood packs, 1 vehicle should be

sent in order to collect 20 extra blood packs. For an inventory level greater than 429 blood packs,

no vehicles should be sent, collecting 0 extra blood packs. The minimum average cost per week

obtained for this scenario is $62.38.

The ordering policy presented above should be adopted by the decision maker in order to

minimize not only the average inventory costs, but also to avoid deterioration and shortage of

blood packs.

To sum up, Table 3.2 shows the optimal ordering policies for the four shelf life scenarios

proposed, where the decision of how many vehicles must be used, and the respective number of

blood packs collected by them, is presented based on the inventory levels available. Table 3.2 also

shows how the average inventory cost varies with changes in the shelf life of blood packs.

Table 3.2: Optimal ordering policies for the given scenarios
# of vehicles

used

# of Blood

packs pick-ups

Shelf life = 42 Shelf life = 21 Shelf life = 14 Shelf life = 7

Inventory level available between:

4 80 0 – 340 0 – 87 0 – 1 – //–

3 60 341 – 364 88 – 122 2 – 41 –//–

2 40 365 – 390 123 – 148 42 – 70 0 – 5

1 20 391 – 428 149 – 180 71 – 100 6 – 32

0 0 429 – 2000 181 – 2000 101 – 2000 33 – 2000

Average Costs / week $62,38 $97,45 $109,14 $120,85

As expected, and presented in Table 3.2 and Figure 3.1, as the inventory level increases, the
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number of blood packs required decreases. Once the shortage probability tends to zero, their trans-

portation and inventory holding costs greatly surpass the expected shortage costs. Furthermore,

as the shelf life decreases, the average inventory costs increase, once the items tend to perish faster,

increasing the disposal costs, as shown in table 3.2.

Moreover, Figure 3.1 presents how the number of blood packs collected decreases as the inven-

tory level increases, for each of the four scenarios considered in the experiment. The figure clearly

illustrates that for bigger shelf lives (V ) the number of blood packs collected decreases slowly, in

order to prevent shortage, since the disposal costs for perished items are very small in comparison

to the shortage costs, due to a small deterioration probability.

In addition, although we consider a huge penalty for shortage of blood packs, the expected

disposal costs for perished items increases significantly as the probability of deterioration grows.

It is worth noting that as the shelf lives decrease, the number of blood packs disposed due to

deterioration would increase fast as the inventory level rises, leading to higher disposal costs.

Hence, the optimal policies tends to avoid such an increase by prescribing less external collection.

Figure 3.1: Optimal policies for blood packs pick-ups)

It is important to note that for distant communities, where the local collection of blood packs

(or local procurement of perishable goods) is difficult or not possible, the low level in the inventory

and the small number of blood packs pick-ups (or purchases), due the small shelf life of a product,

may impose a serious risk to the health of the local community and to the humanitarian operations

themselves.

Even though our model finds the optimal policies based on the minimum cost for the operation,

managers need to keep in mind that the main goal of a humanitarian operation is to protect and

save lives. Therefore, in order to keep the operations at optimal level and avoid putting the

operation in jeopardy, researchers must be able to identify and plan the operational costs that best

represent the desired goal in the model’s objective function.
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3.9.5 Sensitivity Analysis

To evaluate the model’s robustness, and to observe the impact of changing parameters in the

optimal ordering policy, a sensitivity analysis is conducted. Assuming that the set of possible

actions are the same as discussed in section 3.9.1, cost parameters are the same as discussed in

section 3.9.2, considering a shelf life of 42 days, and considering a regular donation of 60 blood

packs per week on average, we will examine the implications of changes in the average demand on

the optimal ordering policy.

In our analysis, we conduct a series of executions of the model, varying the demand distribution

parameter (λ) from 60 to 100 blood packs per week, with an increment of 5 blood packs per week

per execution. The results are shown in the Tables 3.3 and 3.4 and Figure 3.2.

Figure 3.2: Impact of the variation of the demand parameter in the optimal average

costs
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Table 3.3: Optimal ordering policies and average costs for demand parameters be-

tween 60 and 80 blood packs per week
# of vehicles

used

# of Blood

packs pick-

ups

λ = 60 λ = 65 λ = 70 λ = 75 λ = 80

Inventory level available between:

4 80 0 – 115 0 – 153 0 – 191 0 – 230 0 – 269

3 60 116 – 155 154 – 193 192 – 230 231 – 265 270 – 300

2 40 156 – 197 194 – 230 231 – 262 266 – 294 301 – 326

1 20 198 – 234 231 – 266 263 – 298 295 – 330 327 – 363

0 0 235 – 2000 267 – 2000 299 – 2000 331 – 2000 364 – 2000

Average Costs per week: $139,72 $126,30 $113,22 $100,46 $86,24

Table 3.4: Optimal ordering policies and average costs for demand parameters be-

tween 85 and 100 blood packs per week
# of vehicles

used

# of Blood

packs pick-ups

λ = 85 λ = 90 λ = 95 λ = 100

Inventory level available between:

24 80 0 – 305 0 – 340 0 – 374 0 – 407

3 60 306 – 332 341 – 364 375 – 397 408 – 429

2 40 333 – 358 365 – 390 398 – 422 430 – 454

1 20 359 – 396 391 – 428 423 – 462 455 – 495

0 0 396 – 2000 429 – 2000 463 – 2000 495 – 2000

Average Costs per week: $74,18 $62,38 $48.67 $36,85

Tables 3.3 and 3.4 present the variation in the optimal collecting policy for blood packs with

the variation of the demand. As the demand parameter (λ) grows, the number of blood packs

required to prevent shortage increases. For example, Table 3.4 allows us to note that for a mean

demand of 85, the number of blood pack collections required would drop from 80 to 60 once the

inventory level reaches 306 blood packs, however, for a mean demand of 100, this reduction would

happen only with an inventory level of 408 blood packs.

One can verify that while the costs for collecting blood packs would increase, the shortage costs

would decrease. Furthermore, for higher demands the number of perished goods would decrease,

leading to smaller disposal costs. Hence, as the mean demand (λ) increases, the average costs of

the system (objective function) decreases, as shown by figure 3.2.

It is important to note that, in our experiment, disposal and shortage costs represent the

larger part of the inventory costs, since both impose a huge penalty on the system. Consequently,

decreasing both costs would lead to a significant decrease in the average costs. Moreover, the

impact of changes in the shelf life of the goods is demonstrated in Table 3.2 and Figure 3.1.
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Chapter 4

An inventory management model

with a distribution center, multiple

HOs and and unreliable suppliers

4.1 Problem Description and Mathematical Mod-

elling

To support a disaster relief distribution effort, we study the inventory management within a distri-

bution center (DC) that acquires items from suppliers and distributes them to distinct humanitar-

ian organizations. Suppose that a local supplier is a viable source of relief goods, but an external

supplier is also considered to ensure reliability (a local supplier here can also represent a group

of local suppliers). The local supplier will henceforth be called unreliable supplier, as it may be

affected by the disaster and fail to deliver the acquired items with a given probability. In con-

trast, the external supplier, henceforth called reliable supplier, always ensures timely delivery of

the purchased goods.

The DC stores the acquired goods and distributes them to multiple HOs acting under its area

of influence. The DC will thus be subject to inventory and shortage costs. Our framework permits

the differentiation among shortage penalties for the different HOs. The centralised decision making

in the DC also helps to coordinate the operations of multiple HOs acting in the relief effort. It

should be noted that this thesis will quantify the benefit if this approach is used. We are aware

that further research is needed to establish what needs to be done to implement this approach in

practice.

In a disaster scenario the demand for goods is highly unpredictable, hence it is a common

assumption that an HO’s demand is stochastic and follows a known probability distribution. Under

demand and supply uncertainty, the framework finds the optimal purchasing quantities in a dual
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sourcing system, as well as the optimal distribution policies to the multiple HOs responding to the

disaster. A policy provides to the decision maker the actions that must be taken at every decision

epoch, given the state of the system (Putterman 1994). Figure 4.1 synthesises the flow of goods in

the described humanitarian supply chain.

The proposed framework combines a two stage stochastic programming model (TSSP), incor-

porated in a Parameter Evaluation Algorithm, and a Markov Decision Process (MDP). The MDP

seeks an optimal purchasing policy (total amount of products to be acquired) in order to supply the

operation, using the expected costs and transition probabilities obtained by the TSSP. Meanwhile,

the TSSP seeks and optimal distribution policy and the optimal split of the total order among the

individual suppliers. This approach will be further explained.

Figure 4.1: The flow of supplies in the studied problem

Figure 4.2 presents the conceptual flowchart for the proposed framework, where λt is the state

of the system (inventory at the DC) at period t and α total number of products to be acquired

(purchase policy) given that the state is λt. It is worth of emphasis that both the MDP state

space and the action space are uni-dimensional, hence the formulation avoids by design the curse

of dimensionality. To further specify the purchases, the TSSP finds an optimal policy u(λ), that is

comprised of the acquisition policy for all suppliers (where to buy) and distribution policy (where to

send), and establishes the transition probabilities pαλtλ′
t
and average costs associated with the given

policy C(λt, u(λt)) for all possible realisations of the uncertainties. These transition probabilities

and average costs will then be used as parameters in the MDP formulation.

Figure 4.2: Proposed framework conceptual flowchart
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4.1.1 Model characteristics and assumptions

The characteristics of our model and the assumptions used in the model are as follows.

• The demand of each organization is stochastic and follows a known probability distribution.

• Product acquisitions are performed at the beginning of each decision period. Distribution

occurs after the realisation of the uncertain parameters (demand of organizations and reli-

ability of suppliers).

• Lead times for both suppliers are sufficiently small not to encumber the system. Hence,

when delivered, products acquired at a decision epoch will arrive in the same decision

epoch. Such assumption is commonly applied for supply distribution in the literature (e.g.,

Goli and Malmir 2019, Malmir and Zobel 2021, Meraklı and Küçükyavuz 2019).

• There are two suppliers for the distribution center: one reliable, which always delivers the

procured products, although at a higher cost, and one unreliable, which fails to deliver (or

deliver only a portion of) the procured products, with a given probability.

• The distribution center and the organizations have a limited inventory capacity. The ca-

pacity of each supplier is also limited.

• The states of the system are the available inventory at the beginning of each decision epoch.

More specifically, they represent the number of items in stock after the acquisition and

distribution of the products (in the last period). These are the base parameters upon which

the manager will decide over how many items should be acquired from each supplier and

how many items should be distributed.

• The demand lost in a period is not backlogged for the next period. That is valid for many

of the products used in short-term disaster recovery, such as water bottles, since nutrition

needs of the human body do not directly accumulate between decision epochs (day, week,

etc.) and the item was not available when needed. This assumption is regularly applied in

the literature (e.g., Cook and Lodree 2017, Rezaei-Malek et al. 2016).

• The parameter evaluation algorithm (TSSP) aims to transform the purchasing policies (total

amount of goods acquired) available into optimal acquisition policies from both suppliers.

It is also responsible for identifying the optimal distribution and shortage policies for each

organization, based on the inventory level of the system and the global purchase policy

selected, and attributing shortage costs due missed deliveries by the unreliable supplier.

• The minimised cost of the TSSP purchase and distribution policy, given an initial inventory

level (MDP state) at the DC and an the overall number of items purchased (MDP action),

is used in the MDP as the cost of this respective state-action pair. Furthermore, the distri-

bution policies for each scenario are used to calculate the possible transitions between states
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(inventory levels) of the system and their probabilities, for the considered state-action pair.

The calculation of state transition probabilities is described in section 4.1.6.

• The MDP is then solved to determine the optimal overall purchase for each initial inventory

level at the DC; the policy only prescribes the total number, recalling that the split between

suppliers is decided by the TSSP, along with the distribution policy.

• Each scenario used by the TSSP comprises the joint realisation of the demands for all HOs

and the ability of the unreliable supplier to deliver the procured goods.

• Since our framework does not include routing decisions, only distribution of goods, the

distances between suppliers, DC and organizations do not constrain the problem. Thy only

affect the supply costs, which includes transportation costs. But the TSSP is generic enough

to allow including distance constraints for Suppliers, DC or organizations, if needed.

4.1.2 Decision epoch

The decision on the acquisition and distribution of items takes place on a regular basis (e.g. daily,

weekly, etc.) at the beginning of each decision epoch, for the whole planning horizon.

4.1.3 State of the system

The system states represent the available inventory level, and can be represented by units of

product (blood packs, bottles of water, etc.). Therefore, the state space is discrete and denoted by

Λ = {0, 1....,Wcd}, where 0, 1, . . . , Wcd are possible inventory levels at a certain decision epoch

and Wcd is the maximum capacity of the DC.

4.1.4 Actions, cost function and long-term objective

The decisions include firstly the purchase amount (sum of purchases from all suppliers), obtained

from the MDP. Then, the TSSP defines the amounts purchased from each supplier, the amount of

goods distributed and the shortage allowed to each organization in order to better meet the overall

demand.

The MDP aims to find an optimal stationary purchase policy π∗ : Λ → A from the set of

feasible purchasing policies Π. Any policy π ∈ Π specifies a purchase α ∈ Aλ for each inventory

level λ ∈ Λ, where Aλ denotes the set of purchase actions available at state λ and A =
⋃

λ∈Λ Aλ

is the set of available actions. For each inventory level λ ∈ Λ, and purchase amount α ∈ Aλ, a

parameter evaluation algorithm distributes the purchase amount between the competing suppliers

and specifies the optimal distribution policy given the state action pair (λ, α).

For each state-action pair (λ, α), the parameter evaluation algorithm solves a two-stage stochas-

tic programming problem (TSSP). Considering the overall order α, the first stage finds the optimal

orders from the reliable and unreliable suppliers, resp. a and b such that α = a + b. Given the
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initial inventory λ and individual orders to the suppliers (a and b), the second stage of the TSSP

algorithm defines the amount of products to be distributed to each individual humanitarian or-

ganization after the realisation of the uncertainties. The TSSP algorithms seeks to minimise the

overall single-period purchase, inventory holding, distribution and shortage cost C(λ, α).

This overall cost is then fed to the MDP for multi-stage optimisation. Let t denote the time

period and (λt, at) ∈ Λ×A, t ≥ 0 be the MDP’s state-action pair at period t. The MDP’s transition

probabilities - pαλλ′ = P (λt+1 = λ′|λt = λ, at = α) - will be determined by the TSSP algorithm, as

illustrated in Figure 4.2. The TSSP model used is detailed in section 4.1.5. The evolution of this

process is controlled by a Markov Chain {Zt, t ≥ 0} under a control policy π ∈ Π, where Zt = λt

is the inventory level at time t. Now, let τ > 0 be a random planning horizon, to account for

the random duration of a disaster response. The MDP’s objective is to find a policy π ∈ Π that

minimises the overall cost of the disaster response, defined as:

vπ(λ) = EZ

{
τ∑

t=0

C(λt, π(λt))|Z0 = λ

}
,∀ λ ∈ Λ (4.1)

where τ is assumed to be a geometrically distributed random variable with parameter 0 < p =

1− γ < 1, which means that P (τ > t) = γt, t ≥ 0. Hence, it follows that:

vπ(λ) = EZ

{ ∞∑
t=0

γtC(λt, π(λt))|Z0 = λ

}
,∀ λ ∈ Λ. (4.2)

Eq. (4.2) shows how to design an equivalent infinite-horizon discounted cost MDP to optimise

a finite-horizon response for a system with random response time. For finite-duration disaster

responses, we seek a policy π∗ ∈ Π such that

v∗(λ) = vπ∗(λ) ≤ vπ(λ), ∀π ∈ Π. (4.3)

Under mild conditions, the solution to (4.3) exists and is unique (Putterman 1994).

Alternatively, for long-term responses or for systems in which an annual budget is prescribed

to deal with disasters in a certain region, we can use an infinite-horizon MDP with the average

cost criterion. In that case, each policy π ∈ Π is associated to a long-term average cost given by

ηπ = lim
T→∞

1

T
E

{
T∑

t=0

C(λt, π(λt))

}
, (4.4)

recalling that π(λt) is the action at inventory level λt. The objective is to find an optimal policy

π∗ ∈ Π such that:

ηπ∗ ≤ ηπ, ∀π ∈ Π. (4.5)
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4.1.5 Two-stage stochastic model

The TSSP model seeks the optimal purchase quantity a (resp. b) from the unreliable (resp. reliable)

supplier, as well as the distribution policy that minimises the single-period cost C(λ, α) for an initial

inventory λ and a total purchase α = a + b. At each time period, the unreliable supplier fails to

deliver the requested products with a given probability, in which case the acquisition cost is lost.

The probability of delivery fail is a parameter of the model, as is the demand distribution for each

individual humanitarian organization.

We assume that both the organizations and the distribution center have a limited storage

capacity and both suppliers have limited supply capacity. However, the inventory level is fixed at

α for the parameter evaluation algorithm, hence we do not need to include the distribution center

capacity at this TSSP. The decision variables and parameters of the TSSP algorithm are described

below.

Table 4.1: Decision variables
Variable Description
at amount purchased from supplier a (reliable) on period t
bt amount purchased from supplier b (unreliable) on period t
xit amount sent to organization i on period t
yit amount of shortage allowed to the organization i on period t

Table 4.2: Parameters and sets
Parameter Description
I set of humanitarian organizations
qa purchase cost per unit from supplier a
qb purchase cost per unit from supplier b
qh inventory holding cost
ht inventory level at the beginning or period t
α total purchased amount
qei delivery cost per unit to organization i
qfi shortage cost per unit to organization i
Wi storage capacity of organization i
Wa capacity of the reliable supplier
Wb capacity of the unreliable supplier
s Scenario, comprised of the join realization of demand and unreliability

Table 4.3: Uncertain Parameters
Parameter Description
Rt Realization of the delivered goods by the unreliable supplier
Dt set of the demands of all organizations on a given period t
dit demand of organization i on a given of period t
ξt random vector with finite realizations ξ1t , ..., ξ

s
t on period t, where ξst = (Ds

t , R
s
t ) is a random vector

that represents the joint realization (s) of Dt and Rt for a given scenario s

The two-stage model described below decides the purchase quantities a1 and b1 at the first

43



state and the distribution policy at the second stage:

Minimise qaa1 + qbb1 + qhh1 + E[Qs
2(a1, b1, ξ

s
2)] (4.6)

subject to:

a1 + b1 = α (4.7)

a1 ≤ Wa (4.8)

b1 ≤ Wb (4.9)

a1, b1 ∈ Z+, (4.10)

where:

Qs
2(a1, b1, ξ

s
2) = min

∑
i

(qeixi2(ξ
s
2) + qfiyi2(ξ

s
2)) (4.11)

subject to:

a1 + b1R(ξs2) + h1 −
∑
i

xi2(ξ
s
2) ≥ 0 (4.12)

xi2(ξ
s
2) + yi2(ξ

s
2) = di2(ξ

s
2), ∀ i ∈ I (4.13)

xi2(ξ
s
2) ≤ Wi, ∀ i ∈ I (4.14)

xi2(ξ
s
2), yi2(ξ

s
2) ∈ Z+ (4.15)

The objective function (4.6) aims to minimise the inventory holding and purchase costs, from

both suppliers. Equation (4.7) ensures that the number of items purchased match the value ob-

tained by the MDP algorithm. Equations (4.8) and (4.9) represent the supplier capacity constraints.

Equation (4.10) expresses the integer nature of the variables of the first stage.

At the second stage, Eq. (4.11) represents the total distribution and shortage costs. Equation

(4.12) represents the inventory balance and ensures that the amount of distributed goods cannot

exceed the amount purchased plus the initial inventory. The balance between the amount sent

to each organization and the shortage allowed for each organization is enforced by Eq. (4.13).

Equation (4.14) ensures that the inventory capacity of each organization is respected. Equation

(4.15) expresses the integer nature of the variables of the second stage. The cost C(λ, a) returned

to the MDP is the solution of (4.6).

4.1.6 The parameter evaluation algorithm

As previously detailed, the parameter evaluation algorithm uses a TSSP to find the optimal ac-

quisition and distribution policy, as well as the MDP parameters for each state-action pair. The

detailed acquisition and distribution policies, as well as the one-period cost C(λ, α), are directly

obtained from (4.6). Now let pαλλ′ be the probability of transitioning from inventory level λ ∈ Λ to

λ′ ∈ Λ in two subsequent periods, given that the total purchase is α ∈ A.
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To evaluate the transition probabilities paλλ′ , we evaluate the new DC’s inventory level λ′ at the

outset of the next period for each demand scenario, under the optimal distribution and acquisition

policy. Each instance of the algorithm finds at most N new DC inventory levels, where N is the

total number of demand scenarios. For each of these new inventory levels, it is also possible to

identify the MDP’s available action set Aλ′ , by considering the DC storage capacity, meaning that

an action α ∈ Aλ′ if λ′ + α ≤ Wdc

The reasoning behind the development of the algorithm is twofold. Firstly, it avoids the com-

binatorial explosion of the number of possible actions when dealing with acquisition from multiple

suppliers and distribution for multiple organizations, which could render the MDP intractable.

Secondly, it provides scalability to the proposed framework, supporting the growth of the problem

by adding more suppliers or receiving HOs with simple changes in the TSSP, without sacrificing

the MDP’s performance.

Execution

Assume that TSSPλ,α is the two-stage stochastic problem described with parameters ht = λ and

the total acquisition of α items. Then C(λ, α) = Zλ,α, where the latter is the value of the objective

function for the TSSPλ,α. Finally, let

ht+1(ξ
s
t ) = at + btR(ξst ) + ht −

∑
i

xit(ξ
s
t ) (4.16)

be the inventory at period t+ 1, given scenario ξst . Then

pαλλ′ =
∑

P (ξst )11{ht+1(ξst )=λ′|ht=λ} (4.17)

where 11{·} is the indicator function and P (ξst ) is the probability of such scenario. Thus, pαλλ′ is the

overall probability that the next state will be λ′ considering all possible scenarios, initial inventory

λ and overall purchase α. Each realisation ξst is comprised of a demand realisation D = Ds
t and a

realisation of the delivered purchase R = Rs
t , and has probability P (ξst ).

Now, to solve the MDP and obtain the optimal purchasing total for each initial state λ ∈

Λ, we input the costs and transition probabilities for each state-action pair into the respective

MDP formulation, i.e. (4.3) for finite-horizon planning and (4.5) for the long-term average cost

formulation and solve the MDP via classical value or policy iteration (Putterman 1994).

Finally, assuming that π∗(λ) = α is the optimal total purchase at state λ ∈ Λ, then the

detailed purchase plan a and b such that a + b = α and the detailed distribution plan for each

realised scenario will be obtained from the corresponding TSSPλ,α formulation (4.6).
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4.2 Experimentation

The two-stage stochastic programming (TSSP) model is implemented using the Xpress Workbench

3.3.2 tool, running in Microsoft Windows 10 (64 bits), with 16 GB RAM and an Intel Core i7-8650U

CPU (8 CPUs) with approximately 2.11 GHz. The Value Iteration algorithm was programmed

and solved using the C# programming language, using the Xpress Workbench library to interface

with the TSSP model.

To demonstrate the model’s applicability, we present 2 different numerical experiments. First

we explore the distribution of water supplies from a distribution center (DC) to Support Points

(SP) for landslide relief operations in the city of Petrópolis (Brazil), assuming a relatively short-

term operation, leading to a finite time horizon implementation. Then, we analyse the distribution

of hygiene kits (tooth paste, tooth brush, etc.) to different municipalities in the West Java province

(Indonesia), which needs to make procurement decisions regularly (on a monthly basis). Therefore,

we assume a long term operation, with an infinite time horizon implementation. We present

both experiments to show that the presented model can be applied to both long and short term

operations.

4.2.1 Petrópolis experiment

Petrópolis is located in the mountainous region of the state of Rio de Janeiro, approximately 70

km west of the state capital. Comprised of steep slopes subjected to tropical weather with with

no drought season and a high volume of precipitation throughout the year, the region is highly

susceptible to mass movements (landslides), a problem that is aggravated by the illegal occupation

in the hillsides and deforestation and poses a serious threat to the population (Ferreira et al. 2017).

Between 1991 and 2013, 18 landslides were registered in the city, with a death toll of 146 people,

which corresponds to 27% of the total of deaths due landslides in Brazil in that period (Ferreira

et al. 2017). More recently, in February 2022, a precipitation volume of 258 ml in only 2 hours

triggered landslides across different regions of the city, leading to 233 fatal victims and over 3.000

families affected and displaced from their homes (CNNBrasil 2022). Such a background highlights

the importance of preparedness and quick response for landslides in the city.

Landslide response operations are very challenging, as the surroundings of the affected areas

become unstable and new landslides can follow even after the rainy period is over. This jeopardises

rescue operations, hinders or even prevents the return of families to their homes. Moreover, even

non affected locations that are classified as ‘risk areas’ will also require evacuation until weather

conditions improve. Hence, the relief operation may last from a few days to weeks after the event,

and the needs of the region must be constantly analysed and updated.

Therefore, we implement our framework to response operations for landslides in the city. We

assume that a municipal distribution center (DC) will supply different SPs in each district of the

city, which in return will provide the required assistance to the affected communities. Since new

landslides or evacuation orders can be triggered constantly, the decision on the number of goods
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to be supplied at each period needs to be constantly revised, based on the probabilities of events

in each region. This makes our framework a good match for the needs of the landslide relief

operations.

The city is divided in 5 different districts (Centro, Cascatinha, Itaipava, Pedro do Rio and

Posse). The city center (Centro) is the most populous area, with higher number of areas prone

to landslides (Vulnerable Communities – VC). The Petrópolis Municipal Plan of Mass Movement

Risk Reduction (Theopratique 2017) identified 233 VCs in the city, distributed across the districts

as detailed in table 4.4.

Table 4.4: Number of vulnerable communities (VC) per district
Centro Cascatinha Itaipava Petro do Rio Posse

# of VC 101 39 35 32 26

According to Theopratique (2017), each VC in the city can be divided into Risk Areas (RA).

Each RA assigned one of seven possible categories of risk (CR), which are classified according

to the probability of a landslide event and the magnitude of an impact in the RA, based on the

geological and physical characteristics of the site. Table 4.5 shows the probabilities of landslide

and the respective impact for each category of risk, according to Theopratique (2017). These CR

are applied to all RA of the city.

Table 4.5: Categories of risk
Category of risk I II III IV V VI VII

Probability 0.083 0.13 0.11 0.25 0.19 0 0.22

Risk factor 0.3 0.5 0.4 0.9 0.7 0 0.8

New category of risk VI IV V I III VII II

To simplify the interpretation of the experiment and the analysis of the results, we reorganise

the CRs by Risk Factor, as shown in the tables 4.5 and 4.6, where CR I has the highest Risk factor,

and so on. This results in the new category of risk which will henceforth be referred to as CRs. In

our experiment, we assume each CR as an impact scenario, where with the given probability, the

RAs assigned to the CR will be evacuated due an landslide and the number of people living under

the RAs determine the demand for aid.

Figures 4.3, 4.4 and 4.5 the risk area (RA) composition of Oswero Vilaça, one of the commu-

nities with highest risk of landslides in the city, as can be observed in the level curves in figure 4.3.

The coloured areas in figure 4.3 represent the respective CR, presented in table 4.5.
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Figure 4.3: Risk Areas for Oswero Vilaça Community

Figure 4.4: Satellite view of Oswero Vilaça Community
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Figure 4.5: Overview of Oswero Vilaça Community

Table 4.6: Number of houses per CR per district
Category of risk I II III IV V VI

Centro 3748 1913 1495 2523 4691 747

Cascatinha 234 171 1133 501 2389 1334

Itaipava 23 258 880 84 1682 387

Pedro do Rio 287 110 404 29 601 292

Posse 362 44 323 60 476 393

Furthermore, we assume that if an area with a given risk factor is impacted, all areas with a

higher risk factor will also need evacuation, hence, we assume a cumulative demand, where, for

instance, if the RAs with CR II are evacuated (risk factor = 0.8), the RAs with CR I (risk factor =

0.9) will also need evacuation. The reasoning behind this assumption is simple: since risk factors

are calculated based on the magnitude of impact in the area, if a landslide is powerful enough to

trigger an evacuation of an area, it is certainly powerful enough to evacuate all areas with a higher

impact factor as well (more susceptible to landslides). Finally, we assume an average number of

4 people per residence in each RA. Hence, the total demand for each CR in each district of the

city is given by the sum of houses in each RA under the CR, multiplied by 4. Table 4.6 depicts

the total number of houses per district per CR. It is also important to note that CR VII has Risk

factor equals 0, hence no evacuation or impact is expected in these RA, therefore we omitted it in

table 4.6.

To support the evacuees from risk areas during landslides, we assume that each district installs a

Support Point (SP), to provide shelter, food and to support rescue operations. Each SP is supplied

by the municipal DC, which centralizes the distribution of supplies. The DC can be supplied by

donations of goods (unreliable supplier) or acquire the required goods from a commercial supplier

(reliable supplier). In our experiment, we assume the distribution of one commodity: water bottles.

It is believed that the human body needs around 2 litters (l) of water daily to survive. Since 2l

water bottles are common in Brazil, we assume a daily need of 1 water bottle / person / day
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(decision epoch).

In each decision epoch the DC will choose the amount of goods to acquire from the reliable

supplier and the amount of goods it will request to the community as donations. The amount of

goods received as donations each period after the DC’s plea vary according a binomial distribution

X ∼ B(3, 0.5), according to the table 4.7.

Later, to analyse how unreliability affects the optimal acquisition policies, we present the

optimal acquisition policies for both suppliers under the same action set (A1), assuming a more

reliable flow of donations, which follows a binomial distribution X ∼ B(3, 0.6) and a less reliable

flow of donations, which follows a binomial distribution X ∼ B(3, 0.4), as presented in table 4.7.

Table 4.7: Probability of percentage of donations received
% of plea received 25 50 75 100

Baseline Probability 0.125 0.375 0.375 0.125

Less reliable scenario 0.216 0.432 0.288 0.064

More reliable scenario 0.064 0.288 0.432 0.216

Therefore, for every CR (impact scenario), we have 4 different problem scenarios, one for

each percentage of plea met, that directly affect the distribution capacity of the DC. Hence, our

experiment has a total of 24 scenarios, which accounts for the different risk areas (6 CRs) and

percentage of donations received. For each support point (SP) we assume an arbitrary storage

capacity, which constraints its ability to receive goods. Table 4.8 summarises stock capacity per

SP in units of product.

Table 4.8: Storage capacity in units of product for each SP
Support Points (SP)

Centro Cascatinha Itaipava Pedro do Rio Posse
Storage capacity 70,000 25,000 15,000 10,000 10,000

Moreover, the DC has a storage capacity of 120,000 units of product. The supply capacity for

the reliable supplier is 100,000. There is no limitation on the amount of goods the DC can request

as donation, hence, we assume it up to the total DC capacity of 120,00 units. The logistical costs

assumed in the experiment are presented in Table 4.9, where the values are arbitrarily chosen, with

shortage costs being a much higher value than delivery costs, in order to penalise shortages in the

objective function.

Table 4.9: Experiment costs
Cost set Value
Purchase + transport + handling per unit from the reliable supplier (a) $ 04.00
handling + sorting per unit from donations - unreliable supplier (b) $ 01.60
Inventory holding cost per unit $ 01.00
Shortage cost per unit to a SP $ 35.00
Delivery cost per unit to a SP $ 05.00

We also perform another quick sensitive analysis regarding costs by increasing the shortage
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costs from $ 35.00 to $ 45.00, to evaluate how an increase on the shortage costs affects the acqui-

sition policies.

We analyse our experiment under 3 different action sets A, recalling that each element in α ∈ A

represents the total number of items to be acquire at a given period. The first action set assumes

11 possible actions, ranging from acquiring 0 units to acquiring 100,000 units, with increments of

10,000; this yields

A1 = {0; 10, 000; 20, 000; 30, 000; 40, 000; 50, 000; 60, 000; 70, 000; 80, 000; 90, 000; 100, 000}.

The second set (A2) also ranges from 0 to 100,000 units, but with increments of 5,000 units,

yielding to 21 possible actions. Finally, the third set (A3) ranges from 0 to 100,000 units with

increments of 2,500 units, leading to 41 possible actions. This not only acts as sensitivity analysis

for the proposed model, but also allows us to assess how the model behaves regarding the time

and memory need for different problem sizes.

Finally, to determine the duration of response operations in the region, we gathered information

from fifteen Non-Governmental organizations (NGO) that acted in the relief operations from the

last landslide disaster in the city, in February 2022. Governmental information was not yet available

during the execution of this experiment. We used a curve fitting method (executed in python) and

verified that the empirical data received fits a geometric distribution with parameter p = 0.0185

and mean = 66 days, as can be observed in figure 4.6, which compares the empirical cumulative

probability distribution obtained with the cumulative geometrical probability distribution with

p = 0.018. The discount factor is then set up as γ = 1− p = 0.9815 in the objective function - Eq.

(4.2).

Figure 4.6: Comparison of empirical and geometrical cumulative probability distri-

bution
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The Q-Q graph presented in Figure 4.7 contrast the empirical distribution with the fitted

geometric distribution and shows that their quantiles indeed have a good match overall, with a

minor distortion after the 8-th decile, where empirical data seems to be a little higher than the

exponential distribution. The trend line for the Q-Q dispersion also demonstrates that the empirical

data does not stray too far from the x=y line and that the empirical data gathered is more dispersed

than the geometrical distribution. However, it is noteworthy that not all organizations acting on

the disaster provided sufficient data and official data is still not available, adding more data points

to the distribution could provide a smoother fit for the distributions.

Figure 4.7: Q-Q graph for comparison of deciles between empirical and geometrical

distributions

4.2.2 Results

This section discusses and summarises the experimental results. Firstly, we present the information

that the framework offers to the decision maker in order to optimise the relief distribution. Then

we briefly analyse the efficiency of the proposed algorithms in solving relatively large-scale models,

demonstrating that the model provides optimal results quickly enough to be used in real operations.
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Decision making

Table 4.10 shows the optimal purchase policy for the DC, assuming a set of 11 available actions

(A1). The table displays the optimal purchase amount for each range of inventory levels. Which

means that, for instance, with an inventory level ranging from 0 to 19.999, the decision maker

should acquire 100.000 units of product.

Table 4.10: Optimal policy for A1

Inventory level (units) Optimal purchase amount (units)
0 - 19,999 100,000
20,000 - 29,999 90,000
30,000 - 39,999 80,000
40,000 - 49,999 70,000
50,000 - 59,999 60,000
60,000 - 69,999 50,000
70,000 - 79,999 40,000
80,000 - 89,999 30,000
90,000 - 99,999 20,000
100,000 - 120,000 10,000

Along with Table 4.10, Figure 4.8 shows how the purchase policy varies with the inventory

levels of the DC, for 11 available actions. These allow us to observe how the optimal purchase

quantities decrease as the inventory level grows. This behaviour is expected, since the inventory

in hand starts playing a bigger role in supplying the organizations as the DC’s stock increases.

Figure 4.8: Optimal policies 11 available actions
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Figures 4.9 and 4.10 show the optimal policies assuming 21 (A2) and 41 (A3) actions, respec-

tively. They show the same overall behaviour, with the order sizes decreasing as the stock level

grows. It is also important to note that the more actions the decision maker can take, the faster

the number of purchased items diminishes. This can be easily explained by the fact that the deci-

sion maker can make more precise acquisitions accordingly to his/her needs, avoiding overstocking

whilst also avoiding shortages for the Support Points.

Figure 4.9: Optimal policies for 21 available actions
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Figure 4.10: Optimal policies for 41 available actions

Table 4.11 complements Figures 4.8, 4.9 and 4.8, and unfolds the expected average costs for

each action set. It demonstrates that with more available actions one can reduce the long-term

cost, as additional purchasing actions can lead to smaller purchase costs.

Table 4.11: Average costs ($) for action sets studied
11 actions 21 actions 41 actions

Average costs 507,426.61 506,818.76 505,884.84

Figure 4.11 summarises and compares the optimal policies for all studied action sets. It shows

that adding granularity to the action space allows for more flexible policies which, as depicted in

Table 4.11, yield better long-term costs.
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Figure 4.11: Summary of optimal policies for all available action sets

The optimal distribution policies and detailed acquisition policies for both suppliers are ob-

tained through the execution of the TSSP, with inventory level and total purchase action taken as

input parameters. This execution takes place in the parameter evaluation algorithm, as detailed

in Section 4.1.6. Figure 4.12 shows the variation on the acquisition amounts from both suppliers

with the inventory level of the DC, for A1 action set.
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Figure 4.12: Acquisition variation per supplier for A1 action set

It is noticeable that as the inventory level rises, the amount of purchased items from the reliable

supplier diminishes and the amount acquired from the unreliable supplier increases. This can also

be explained by the amount of items the decision maker has at hand, items in stock can replace

items acquired from the reliable supplier, allowing the decision maker to choose to buy from the

unreliable supplier at a smaller cost.

Figure 4.12 also allows us to observe a saw-tooth behaviour for the acquisition policies of both

suppliers, with the unreliable supplier being more stable whilst the reliable supplier sees their

requests decreased. The spikes in the acquisitions from the reliable supplier match the decrease of

the total amount of products purchased. With a smaller quantity purchased, the decision maker

has a smaller slack to deal with unreliability, which leads to small increases in the acquisitions

from the reliable supplier when the total purchase amount is reduced.

Finally, it shows that from 80,000 items in stock onward, all the requests can be made from

the unreliable supplier, since the DC already have enough stock at hand, allowing the decision

maker to choose the cheapest option, assuming more risks due unreliability, without jeopardizing

the operation. Here, it is important to note that in figure 4.12, the "Total" line is superposed by

the "Unreliable supplier" line, because all the purchases are made to the unreliable supplier.
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Figures 4.13 and 4.14 represents the purchase policies for reliable and unreliable supplier (do-

nations), for both the less and more reliable donations scenarios, respectively. Along side Figure

4.12, they display how the acquisition policy for the reliable supplier diminishes faster with a more

reliable flow of donations. This is an expected behaviour, since donations are much cheaper than

acquisitions from a reliable supplier, leading to smaller overall costs, presented in table 4.12, if the

decision maker can rely on them to run the operation.

Figure 4.13: Acquisition variation per supplier for A1 action set with less reliable

donations (B(3, 0.4))
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Figure 4.14: Acquisition variation per supplier for A1 action set with more reliable

donations (B(3, 0.6))

Table 4.12: Average costs ($) for different levels of reliability of donations, assuming
A1 action set

Less reliable scenario Baseline scenario More reliable scenario
Average costs 514,641.47 507,426.61 488,141.65

The results obtained by increasing the shortage costs of the system can be observed in Figure

4.15. We observe that the total acquisition amounts do not change, however, since shortage

now have a much deeper impact on the overall costs of the system, the amount acquired from

the unreliable supplier is smaller is comparison to the baseline scenario with A1. For instance,

for an inventory level of 0, in the baseline scenario we acquire a total of 90,736 units from the

reliable supplier and 9,264 units from the unreliable supplier, whereas in the increased shortage

costs scenario the acquisition policies for reliable and unreliable supplier is 95,368 and 4,632 units,

respectively.
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Figure 4.15: Acquisition variation per supplier for A1 action set with increased

shortage costs

Finally, an example of distribution policy is given in Figures 4.16, 4.17, 4.18 and 4.19 which

convey an optimal distribution policy for A1, assuming an inventory level equal to 0, for which

Table 4.10 presents an optimal purchase policy of 100,000 items
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Figure 4.16: Units of product sent to each SP per scenario for 25% of requested

donations received

Figure 4.17: Units of product sent to each SP per scenario for 50% of requested

donations received
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Figure 4.18: Units of product sent to each SP per scenario for 75% of requested

donations received

Figure 4.19: Units of product sent to each SP per scenario for 100% of requested

donations received

Figure 4.16 presents the amount of goods sent to each SP for scenarios 1 to 6 (CR 1 to CR 6).

In this example we assume that only 25% of the requested donations were received, hence, the DC
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could not meet the demand of all SP. However, we can see that the received goods were distributed

according to the SP demands and that the overall shortage of the system is low.

Figures 4.17, 4.18 and 4.19 represent a percentage of delivery of donations of 50%, 75% and

100%, respectively. We can observe that the overall shortage of the system reduces as the number of

satisfied requests increase, with the smaller SP receiving less goods in event of shortages. However,

it also allows us to conclude that even at 100% of request satisfaction, the system still can not

fulfil the demand of all SPs when the DC inventory level is 0 and demands are at its peak (CR6).

Although the peak demands probability is low, 8.3%, it indicates that the decision maker may

need to include higher purchase options in the system.

Implementation and computational remarks

Table 4.13 below summarise the computational results for the experiments. It shows the execution

times (in seconds) and amount of physical memory (RAM, in megabytes) required to execute both

algorithms that comprise the proposed framework, for each action set studied.

Table 4.13: Computational results
KPI 11 actions 21 actions 41 actions

TSSP MDP Total TSSP MDP Total TSSP MDP Total
Time (s) 3,251.69 60.33 3,312.02 6,234.51 108.94 6,343.45 11,855.16 207,03 12,062.19
RAM (MB) 324 69 393 601 85 686 1,153 332 1,485

One can observe that both algorithms perform efficiently, using few resources and low execution

times, even for relatively large problems such as the scenarios with 41 available actions. Both

processing times and physical memory usage grow linearly with the number of actions considered.

The TSSP which carries the heaviest load of the processing time, because it is responsible for the

execution of all integer models and calculation of future states of the systems and the transition

probability matrix, takes an average of 3 hours to run for 120.000 states and 41 available actions,

and the MDP takes around 4 minutes to run.

Furthermore, the parameter evaluation algorithm takes more time for a high number of avail-

able actions, once the number of executions of the TSSP directly depends on the number of actions

being considered. However, since the framework needs to be executed only once during the lifetime

of the operations, the total execution time of the framework is not prohibitive, as can be observed

in table 4.13.

It is noticeable that the TSSP executions require more physical memory than the MDP, for

every scenario studied, and the amount of physical memory required to run the framework is

stacked up. However, since the MDP adds a very little load to the overall framework, this is not

a limitation for current computers.

Furthermore, the proposed experiment uses the maximum granularity for inventory manage-

ment, which leads us to 120,000 possible states of the system, which greatly increases the problem

size. The decision maker can choose a smaller granularity for the system, and discretize the in-

ventory levels in bigger intervals. Simply changing the inventory level interval do 2 units instead
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of one already reduces the problem size by half, which reduces the amount of resources used and

allow the decision maker to increase the number of actions in the action set, if needed.

4.2.3 West Java experiment

The West Java province in Indonesia comprises of 27 municipalities, 23 of which are recurrently hit

by disasters. At the province level, the responsibility for the management of disaster, from mitiga-

tion and preparedness to response and recovery, lies with West Java Regional Disaster Management

Agency (BPBD Jabar). When responding to a disaster, they work closely with the Municipal-Level

Disaster Management Agencies and humanitarian organizations. Henceforward, we will refer to

Municipal-Level Disaster Management Agencies and municipalities interchangeably.

In this case, we focus on the aggregated procurement policy at province level. BPBD Jabar has

a warehouse (Command center) which is responsible for acquisition and storage of relief items. In

the event of a disaster, the command center then redistributes the relief items to the municipalities,

according to their needs. Likewise, each municipality has a warehouse that receives and distributes

relief goods to the victims within its boundaries. Figure 4.20 illustrates this configuration.

Figure 4.20: West Java distribution model

As mentioned in Onggo et al. (2021), this province experiences small-to-medium level disasters

on daily basis. Hence, they need to make the procurement decision regularly (i.e., how many relief

items to buy/stock). In this case, we study the acquisition and distribution of hygiene kits (tooth
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brush, tooth paste, shampoo, etc.), to disaster victims in the affected areas, assuming that each

person requires one unit of hygiene kits per month.

We assume that the decision making is done monthly, once it is cheaper to aggregate purchases.

When a disaster happens, the demand on the Command Center is fulfilled from the commercial

suppliers (reliable suppliers) and donations of supplies (unreliable source of supplies). The accessi-

bility in West Java province is good, which means that the relief items can be delivered very quickly

(typically within 24 hours), therefore, we can assume that are no lead times between acquisition

and delivery of goods. Furthermore, since the province is hit by disaster on a regular basis, the

problem presents itself as an infinite time horizon model, according to the formulation presented

in equations (4.4) and (4.5)

The command center has a storage capacity of 60,000 units, whereas the all the Municipal-

Level Disaster Management Agencies have a similar configuration, presenting a storage/receiving

capacity of 15,000 units. At the same time, the local commercial suppliers have availability to

provide 60,000 units every month, and there is no limitation for the number of donations received,

other than the Command center storage capacity.

The demands for each of the 23 municipalities in the event of a disaster varies according to

4 different disaster scenarios, calculated using historical data, according to the magnitude of the

disaster. The demands for each scenario, as well as the scenario probability are presented in table

4.14

Table 4.14: Demand and probability for each scenario - Java study case
Code Municipality Scenario 1 Scenario 2 Scenario 3 Scenario 4
Mun 1 Kab.Bandung

Barat
38 278 51 370

Mun 2 Kab.Bandung 14502 4018 369 7506
Mun 3 Kab.Bekasi 552 120 0 250
Mun 4 Kab.Bogor 6378 610 21 87
Mun 5 Kab.Ciamis 18 0 0 254
Mun 6 Kab.Cianjur 51 0 18 33
Mun 7 Kab.Cirebon 3323 170 0 40
Mun 8 Kab.Garut 805 101 2531 190
Mun 9 Kab.Indramayu 1442 1400 0 0
Mun 10 Kab.Karawang 18871 1221 7143 89
Mun 11 Kab.Kuningan 30 2 16 19
Mun 12 Kab.Majalengka 30 65 0 0
Mun 13 Kab.Pangandaran 162 13 3 4881
Mun 14 Kab.Subang 1216 1588 0 9
Mun 15 Kab.Sukabumi 364 228 1029 4
Mun 16 Kab.Sumedang 495 407 7 27
Mun 17 Kab.Tasikmalaya 65 0 244 1614
Mun 18 Kota.Banjar 15 0 0 0
Mun 19 Kota.Bekasi 11041 15 0 0
Mun 20 Kota.Bogor 64 29 42 35
Mun 21 Kota.Cimahi 46 111 0 34
Mun 22 Kota.Depok 3 0 0 0
Mun 23 Kota.Tasikmalaya 10 0 0 17

Probability 0.61 0.11 0.12 0.16

In a similar approach to the one applied to Petrópolis experiment, we study the Java case under

three different action sets, and three different unreliability scenarios. The first action set assumes

11 possible actions, ranging from acquiring 0 units to acquiring 60,000 units, with increments of
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6,000; this yields

A1 = {0; 6, 000; 12, 000; 18, 000; 24, 000; 30, 000; 36, 000; 42, 000; 48, 000; 54, 000; 60, 000}.

The second set (A2) uses the same range, but with increments of 3,000 units, yielding to 21 possible

actions. The third and final action set (A3) is comprised of increments of 1,500 units, leading to a

set of 41 elements.

As far as unreliability is concerned, we assume the same values and analyses presented for

the Petrópolis case. At each decision epoch the Command center chooses the amount of goods to

acquire from the commercial suppliers and the amount of goods it will request to the community

as donations. The amount of goods received as donations each period after the Command center’s

request vary according a binomial distribution X ∼ B(3, 0.5). Later, we present the optimal

acquisition policies for both suppliers under the same action set (A1), assuming a more reliable

flow of donations, which follows a binomial distribution X ∼ B(3, 0.6) and a less reliable flow of

donations, which follows a binomial distribution X ∼ B(3, 0.4), according to the table 4.15.

Table 4.15: Probability of percentage of donations received - Java Study Case
% of requests received 25 50 75 100

Baseline Probability 0.125 0.375 0.375 0.125

Less reliable scenario 0.216 0.432 0.288 0.064

More reliable scenario 0.064 0.288 0.432 0.216

Finally, we assume arbitrary logistical costs for this experiment, as presented in table 4.16.

And once again, we select shortage costs much higher than than delivery costs, in order to penalise

shortages in the objective function.

Table 4.16: Experiment costs
Cost set Value
Purchase + transport + handling per unit from the reliable supplier (a) $ 03.00
handling + sorting per unit from donations - unreliable supplier (b) $ 01.00
Inventory holding cost per unit $ 01.00
Shortage cost per unit to a SP $ 35.00
Delivery cost per unit to a SP $ 05.00

4.2.4 Results

In this session, we discuss the results for the West Java experimnent, with focus on the information

the framework provides to the decision maker, to improve the efficiency of the operation. Then,

we briefly discuss the computational assessment of the execution of the proposed framework.

Decision making

The optimal acquisition policies for the Command center, in the West Java case, assuming scenarios

with 11 actions, 21 actions and 41 actions, can be observed through figure 4.21. It presents how
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the optimal acquisition policies, including both suppliers, vary with the inventory levels of the

Command center.

It allow us to compare how the optimal purchase decreases with the inventory level of the

Command center, and to observe a similar behaviour from the one observed in the Petrópolis

experiment, where the amount of products acquired decreases as the inventory level increases.

Figure 4.21: Summary of optimal policies for all available action sets - West Java

case

Moreover, it allows us to compare the behaviour of the acquisition policies for the different

actions sets studied, and with that highlight how the granularity of the action sets directly impacts

in the acquisition policies. We can observe that the optimal policy for the action set A3 (41 actions)

runs between the optimal policies for A1 and A2. This can be explained by the freedom given to the

decision maker, providing the ability to make more precise calls on the needs of the operation and

find a better balance between overstocking and shortages allowed whilst tending to the demands

of the operation. This leads to smaller operation costs, as complemented by table 4.17.

Table 4.17: Average costs ($) for action sets studied - West Java case
11 actions 21 actions 41 actions

Average costs 533,451.09 530,762.04 529,866.34
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The breakdown of the optimal acquisition policies into purchase policies for both suppliers,

assuming action set A1, is displayed in figure 4.22.

Figure 4.22: Acquisition variation per supplier for A1 action set - West Java case

Just like Petrópolis case, the same saw-tooth behaviour for both suppliers is expected. Figure

4.22 shows that as the inventory level of the Command center grows the total acquisition dimin-

ishes, as well as the amount acquired from the reliable supplier. Additionally, the amount acquired

from the unreliable supplier (received as donations) grows up to a point where the total acquisition

amount drops, and with it also does the amount expected from the unreliable supplier. This be-

haviour is also explained by the smaller slack that the decision maker has to deal with unreliability

when the inventory level is low, which yields small increases in the acquisitions from the reliable

supplier and reduction on the acquisitions from the unreliable supplier, once failed deliveries would

increase the shortage and consequently the operation costs.

Figures 4.23 and 4.25 present the acquisition policies for both suppliers for the less and more

reliable donations scenarios, respectively. We can observe that for the less reliable scenario, the

amount received from the unreliable supplier is much smaller than that for the baseline scenario or

the more reliable scenario. Not only the fact that the reliability of donations is smaller, but also
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the gap between costs from both suppliers is short, as explained above, which makes the unreliable

supplier much less appealing for the decision maker.

In fact, the amount is smaller than the actual drop in the total amount acquired between

states, which leads to a drop in acquisition from both suppliers simultaneously. This drop is so

small (two hundred units) in comparison to the remainder of the acquisition policies that it is

barely shown in figure 4.23. Hence, we included a snapshot of a portion of the plot, in figure 4.24,

to illustrate this reduction.

Figure 4.23: Acquisition variation per supplier for A1 action set with less reliable

donations (B(3, 0.4)) - West Java case
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Figure 4.24: Drop in the acquisition amount for the reliable supplier for A1 action

set with less reliable donations (B(3, 0.4)) - West Java case

On the other hand, the more reliable donations scenario presents no difference in the acquisition

policies from the baseline scenario. This can be explained by the fact that the reward/risk rate for a

small increase in the reliability is not large enough to justify an increase in the acquisitions from the

unreliable supplier, because a shortage would incur a much larger penalty than the savings. This

can be explained by the small gap between reliable and unreliable supplier costs, especially noting

that the biggest demands have a much bigger probability in the West Java experiment, hence a

reduction in the amount acquired from the reliable supplier lead to a higher risk of shortage overall.
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Figure 4.25: Acquisition variation per supplier for A1 action set with more reliable

donations (B(3, 0.6)) - West Java case

Table 4.18 summarises the average costs for each of the 3 reliability experiments studied, where

we observe that the less reliable scenario indeed offers a greater average cost for the operation,

whereas both baseline and more reliable scenario present similar costs, as presented before.

Table 4.18: Average costs ($) for different levels of reliability of donations, assuming

A1 action set - West Java case
Less reliable scenario Baseline scenario More reliable scenario

Average costs 534,583.49 533,451.09 533,451.09

Although, differently from the Petrópolis case, the amount acquired from unreliable supplier

never really surpasses the amount acquired from the reliable supplier, returning to 0 when the total

acquisition drops. This is explained by the scenario demands and its probabilities. For the West

Java experiment, the scenario with biggest demands has a very high probability, whilst scenarios

with smaller demands have low probabilities, which implies that relying on donations to support the

operation can lead to high shortage volumes in the most likely scenario. To exemplify this behavior,

we propose another experiment, where we arbitrarily change the demand scenario probabilities for

a more equitable distribution, as displayed in table 4.19, keeping the same parameters for the

experiment and assuming action set A1 and baseline probabilities for donations received.
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Table 4.19: Probability for each demand scenario - Equitable experiment
Scenario 1 Scenario 2 Scenario 3 Scenario 4

Probability 0.15 0.35 0.20 0.30

In the equitable distribution experiment the amount acquired from the unreliable supplier is

able to overtake the amount obtained from the reliable supplier, as displayed by Figure 4.26.

Figure 4.26: Acquisition variation per supplier for A1 and equitable demand proba-

bilities - West Java case

Finally, the distribution policies for all 23 municipalities, in each scenario, is determined by

the TSSP, as demonstrated by figures 4.27, 4.28, 4.29 and 4.30, that present amount of units

distributed for each percentage of demand plea met, for each one of the four demand scenarios,

assuming A1.
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Figure 4.27: Units distributed to each municipality assuming 25% of demand plea

met - West Java case

Figure 4.28: Units distributed to each municipality assuming 50% of demand plea

met - West Java case
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Figure 4.29: Units distributed to each municipality assuming 75% of demand plea

met - West Java case

Figure 4.30: Units distributed to each municipality assuming 100% of demand plea

met - West Java case

It is noteworthy that the first demand scenario has a much higher probability, and also a higher

overall demand among municipalities. Hence, it pulls the amount acquired from the Command

center up, having a much greater impact in the acquisition policies, once the shortages would have
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a much greater impact. Therefore, scenario 1 impacts the amount acquired enough to ensure that

the demand of all municipalities are covered for the other 3 demand scenarios, which implies that

only demand scenario 1 is affected by shortage of supplies, for the 4 different donation request

scenarios, as exemplified by figure 4.31.

Figure 4.31: Shortage allowed to each municipality assuming a 25% demand plea

met - West Java case

Furthermore, we can identify that the municipality of Kab.Karawang has a total demand of

18,871 units for demand scenario 1. Although, as explained in section 4.2.3, all the Municipal-Level

Disaster Management Agencies have the same storage capacity of 15,000 units. This explains the

high shortage for the municipality, 3,871 units, shown in figure 4.31. This also informs the decision

maker that this municipality needs infrastructure intervention to improve its capacity, otherwise

it will not be capable of meeting its demand, even if it could have all the resources available.

Implementation and Computational remarks - Java case

A summary of the computational results for the West Java case is presented in table 4.20, displaying

both execution times (in seconds) and amount of physical memory (RAM, in megabytes) required

to execute the proposed framework, for each action set studied.

Table 4.20: Computational results - West Java case
KPI 11 actions 21 actions 41 actions

TSSP MDP Total TSSP MDP Total TSSP MDP Total
Time (s) 2254.1 35.768 2289.868 4224.469 46.47 4270.939 8032.581 74.581 8107.162
RAM (MB) 1072 116 1383 2039 196 2235 3975 311 4091
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Once again we can observe that the TSSP carries the heaviest burden of the framework, for

both execution times and amount of memory consumed, since it is directly impacted by the number

of actions being considered and the number of states. And that the MDP runs relatively fast even

for a greater number of actions: 59 seconds for 41 actions and 60,000 states of the system.

It is very important to highlight that the Petrópolis case and the West Java case have different

setups, with distinct number of demand points, number of scenarios and inventory levels, due very

different sources of information, and especially, location necessities. So any comparison between

the two cases must be handled carefully.

With that in mind, analysing the results of the execution of both cases provided in tables 4.13

and 4.20, we can observe that the MDP runs faster for the West Java case than it does for the

Petrópolis one, even though the West Java cases consider almost 5 times more locations being

supplied.

On the other hand, the Petrópolis case has 24 total scenarios (demand scenarios multiplied

by donation’s reliability scenarios), whilst West Java assumes 16 total scenarios. This suggests

that the amount of organizations or supply points being considered has little impact on the MDP

execution. That is indeed expected, since it is known that the MDP execution is much more

affected by the action sets and the space state being considered.

Furthermore, the same can be observed for the TSSP, where the algorithm runs in average 31%

faster for the West Java case than for Petrópolis case, for all action sets. Also an expected result,

once the amount of executions of the TSSP is directly proportional to the amount of states and

actions in the system. Whereas the amount of supply points increases the amount of constraints

in the model, making a single run slightly longer. But this increase is offset in the fairly simple

Stochastic Model, as the number of executions of the TSSP is greatly increased with the number

of states.

However, we can observe that the amount of physical memory used by the West Java case is

higher, for both MDP and TSSP. This is easily explained by the way we implemented our model.

We keep the results for all inventory levels and actions in memory, to increase the information

retrieval speed, focusing on reducing the overall executions times. Hence, the West Java case keeps

data for 60,000 inventory levels, 23 organizations and 16 scenarios in memory, which ends up being

much larger than the Petropolis case.

An implementation approach to reduce the amount of memory being used is to store the results

of the MDP and TSSP in a Database (DB), and only retrieve the necessary values when required,

not only for the MDP execution, but also to present the results to the decision maker. This

would slightly increase the execution times of both MDP and TSSP, due connections to a DB, but

significantly decreased the amount of physical memory used.

The DB approach is the suggested implementation approach for a real life operation. Since

the framework only needs to be executed once during the lifetime of the operation, the gain in

processing times is not relevant enough when compared to the amount of memory a computer

is using, which enables less powerful computers to run the framework successfully. Moreover, it
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allows decision makers to install the DB in a different machine, such as a DB server, which has a

much greater storage capacity.

All in all, we can observe that the framework suggested in this research runs relatively fast

and with modest computing resources, even for large instances of the problem, especially when

considering it needs to be executed only once during the lifetime of the operations, unless a key

parameter is changed during the course of the response.
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Chapter 5

Concluding remarks

In this work, we develop two different inventory management frameworks, the first focused on the

management of perishable items in long term operations with uncertain demand and uncertain

supply/donations. The second studies the distribution of goods in a dual sourcing system with

unreliable suppliers and uncertain demands for multiple organizations/actors, both using novel

approaches to tackle known constraints of both humanitarian and commercial logistics.

We use humanitarian logistics examples in our experimentation because they present highly

complex environments, suitable for exploring new optimisation models. Moreover, although hu-

manitarian logistics is a focus of growing interest from the academy, it still greatly lacks behind

commercial logistics. Our research intents to shorten this gap.

The intent behind this research was to develop a novel robust framework which would be com-

prised of both core ideas: an inventory management model that assumes perishability of items and

multi sourcing with unreliable suppliers, that could be used not only for humanitarian operations

but also in commercial logistics. Hence, we leave it as a direction for future researches, to enclose

both constraints into a single inventory management framework.

For the first core idea, we developed an inventory management model for perishable items as a

Markov Decision Process (MDP) with stochastic demand and stochastic donations (offer of goods)

and deterministic deterioration rates, where the goal is to minimise the average operational costs

for a continuous aid operation in a humanitarian crisis environment.

Utilising a MDP allowed us to determine the optimal ordering policy for perishable items

based on the inventory level (states) of the system, preventing shortage of sensitive goods in

disaster response. Furthermore, as the model decides whether a new batch of items is accepted

to the stock based on the probability of that batch expiring before being demanded, our model is

able to consider deterioration without explicitly keeping track of the expiration dates of all items

in stock. That greatly simplifies the analysis and enables us to explicitly account for deterioration

costs in the model, which seeks a compromise between long-term storage and deterioration costs,

while also accounting for logistics and transportation costs.

The experiment presented in this work explores the impact of different shelf lives of the products
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in the inventory and the results suggest that smaller shelf lives greatly lower the number of items

collected (or purchased), even when the inventory levels are low. The intuition here is simple:

there is no point in collecting items if the probabilities that they will expire is very high. This is

reinforced when the disposal costs are high due to the difficulty of properly disposing deteriorated

items, especially goods such as blood and medicines that can impose health threats if not handled

correctly.

To sum up, the model contributes to the theory by providing and MDP model that accounts for

stochastic demands and donations, while also directly considering the perishability of the donated

items. The MDP allows for a simple treatment of long-term operations while also enabling a

simple, easy to implement solution strategy based solely on the storage level. This works also

contributes to the practice by shortening a gap in the literature with respect to minimising the

impact of disasters over a vulnerable community in long term operations, such as plagues, where

perishable items, such as vaccines and food, play a critical role in assisting people in need. The

proposed tool is easy to use and implement by practitioners.

The experiment also allows us to realise that the proper choice of cost parameters (or functions)

is essential when modelling the inventory management of humanitarian operations. In many cases

shortage or disposal of goods is not an option, due the sensitivity of the item or lack of donations

or local retailers. The costs of the model must be carefully selected based on the main goal of a

humanitarian operation: to save and protect lives.

As an expansion of the first model, the second part of this research focuses on an inventory

management framework, which aims to minimise the expected operational costs for a DC that

acquires and distributes supplies in a disaster relief operation. We assume a dual-sourcing system,

with one reliable and one unreliable supplier, and multiple HOs with stochastic demands that

receive goods from the DC. To the best of our knowledge, this is the first attempt to assume

unreliability of a supplier as a constraint in humanitarian operations.

The framework is comprised of a Markov Decision Process and a parameter evaluation algo-

rithm with a two-stage stochastic optimisation model. The MDP allowed us to determine the

optimal ordering/acquisition policy based on the inventory level of the system. The parameter

evaluation algorithm is responsible for identifying the amount of goods to be acquired from each

supplier, based on the ordering policy identified, and the amount of goods to be distributed for

each HO. The proposed framework is easy to implement and the results can be readily analysed

by practitioners.

Assuming a dual-sourcing system allows us to select a local supplier, in order to help reestab-

lish the local economy, without compromising the operations in the event of the local (unreliable)

supplier being unable to provide the solicited goods. Furthermore, by assuming a centralised deci-

sion making structure, where the DC coordinates with suppliers and humanitarian organizations,

we implement both horizontal and vertical coordination mechanisms. This allows organizations,

acting on different levels of the supply chain, to improve information and resource sharing and to

avoid overlap, thus leading to a more reliable decision making process.
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The experiments presented in this study analyse the impact of different demand probabilities

for each demand point (SP or Municipalities) being supplied by the DC, and the results suggest that

disasters with high probabilities of high demands (such as the West Java case) have a large impact

on the amount of goods acquired from the reliable supplier. This implies that for disaster situations

with a huge number of victims, shortages have a much bigger toll on the total operations costs

than transportation or inventory holding costs, especially when realising that shortage costs are

usually implemented as a manner of alleviating the suffering of the affected population. Therefore,

a more stable and reliable source of goods is required.

The experiment also explores the impact of different actions sets available to the decision

maker, and finds that with more available options the decision maker can take more precise actions,

reducing the overall costs the operations and avoiding overstocking while keeping a safe inventory

level to avoid shortages. However, the study suggests that the number of available actions has a

smaller impact on the average expected costs than the reliability of supplies.

The proposed framework can be applied for both long-term and short-term operations and

is flexible enough to be applied in a wide range of operations, as demonstrated by the different

numerical experiments presented. Moreover, it provides a large amount of information to the

decision maker, allowing a more precise and coordinated decision making process.

Besides, it is comprised of a stochastic programming model, that despite being clearly defined,

can be altered to include new constraints, decisions and/or operational costs, such as routing

decisions, if required by specific situations. Providing a flexible tool for disaster preparation and

response.

5.1 Future research directions

The models presented have room for improvement. In our first model we assume lead-times only

as a tool to lower the shelf life of perishable goods. Hence, the model could be extended in order to

consider lead-times as a constraint, especially considering the several particular characteristics of

the supply chains of specific perishable items (e.g. cold supply chains for medicine or blood packs).

Moreover, the perishability model does not consider individual expiration dates for each item

in the inventory, however, several authors Holguín-Veras et al. (2014) discuss the difficulty and the

importance of donation’s management in humanitarian organizations, including managing dona-

tions from different donors with different expiration dates that arrive at the disaster site at the

same time. Therefore, our model could be improved by assuming multiple sources of goods, raising

the possibility of goods with different shelf lives arriving in the disaster site at the same decision

epoch, in order to better represent the challenges and needs of humanitarian organizations.

Finally, humanitarian crisis are often responded by multiple organizations with the same goal.

Hence, multiple warehousing and coordination between organizations could be considered in pos-

terior extensions of the model, aiming for an equitable distribution of resources donated (and/or

purchased) and optimising the total operation costs. Besides, warehouse capacity should also be
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considered when multiple warehouses are used in the model. These objectives are tackled in the

second framework presented in this research.

The second model seeks to improve on the first model by including centralized decision maker

and multiple organizations and suppliers in the supply chain. However, it can also be improved. We

assume that both reliable and unreliable supplier have no lead-times, and the difference between

them is only in the supply costs. Hence, the model can be extended to incorporate lead-times from

both suppliers as a constraint, especially assuming that both suppliers can be in very different

locations, and could have different lead-times.

Furthermore, our model assumes an unreliable supplier, which may not deliver the products

in a specific decision epoch. Hence, DC must also decide how much shortage is allowed for each

organization when the inventory is insufficient to supply all the demand, considering only the

impact of shortage in the overall costs. However, we do not assume an equitable distribution

of goods across the demand points. Therefore, the model can be improved by assuming equity

constrains, to ensure that all demand points receive similar amounts of goods.

Finally, we assume an arbitrary value for the probability of the unreliable supplier failing to

deliver the procured goods. We do not focus on identifying the actual reliability of suppliers. There-

fore, our framework could be improved by identifying a more realistic measure of the reliability of

individual suppliers to incorporate it to proposed solution.
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